Automated Detection and Depth Determination of Melt Ponds on Sea Ice in ICESat-2 ATLAS Data - The Density-Dimension Algorithm for Bifurcating Sea-Ice Reflectors (DDA-bifurcate-seaice)

As climate warms and the transition from a perennial to a seasonal Arctic sea-ice cover is imminent, understanding melt ponding is central to understanding changes in the new Arctic. NASA's Ice, Cloud and land Elevation Satellite (ICESat-2) has the capacity to provide measurements and monitorin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 61; s. 1
Hlavní autoři: Herzfeld, Ute Christina, Trantow, Thomas, Han, Huilin, Buckley, Ellen, Farrell, Sinead Louise, Lawson, Matthew
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:As climate warms and the transition from a perennial to a seasonal Arctic sea-ice cover is imminent, understanding melt ponding is central to understanding changes in the new Arctic. NASA's Ice, Cloud and land Elevation Satellite (ICESat-2) has the capacity to provide measurements and monitoring of the onset of melt in the Arctic and on melt progression. Yet ponds are currently not identified on the ICESat-2 standard sea-ice products, in which only a single surface is determined. The objective of this paper is to introduce a mathematical algorithm that facilitates automated detection of melt ponds in ICESat-2 ATLAS data, retrieval of two surface heights, pond surface and bottom, and measurements of depth and width of melt ponds. With the Advanced Topographic Laser Altimeter System (ATLAS), ICESat-2 carries the first space-borne multi-beam micro-pulse photon-counting laser altimeter system, operating at 532 nm frequency. ATLAS data are recorded as clouds of discrete photon points. The Density-Dimension Algorithm for bifurcating sea-ice reflectors (DDA-bifurcate-seaice) is an auto-adaptive algorithm that solves the problem of pond detection near the 0.7 m nominal along-track spacing of ATLAS data, utilizing the radial basis function for calculation of a density field and a threshold function that automatically adapts to changes in background, apparent surface reflectance and some instrument effects. The DDA-bifurcate-seaice is applied to large ICESat-2 data sets from the 2019 and 2020 melt seasons in the multi-year Arctic sea-ice region. Results are evaluated by comparison to those from a manually forced algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2023.3268073