Neural-Network-Based Nonlinear Optimal Terminal Guidance With Impact Angle Constraints
The terminal guidance problem considering nonlinearity, optimality, and impact angle constraints is investigated. First, the conditions for optimal guidance in the longitudinal plane are derived based on the Pontryagin's maximum principle, and then the to-be-solved two-point boundary value prob...
Uložené v:
| Vydané v: | IEEE transactions on aerospace and electronic systems Ročník 60; číslo 1; s. 819 - 830 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9251, 1557-9603 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The terminal guidance problem considering nonlinearity, optimality, and impact angle constraints is investigated. First, the conditions for optimal guidance in the longitudinal plane are derived based on the Pontryagin's maximum principle, and then the to-be-solved two-point boundary value problem is equivalent to a backward integration problem. Then, analytical boundaries are given to initialize the states for backward integration. Based on the easily accessible dataset, a neural network is trained to approximate the optimal guidance commands. Lastly, an optimal terminal guidance scheme combined with the neural network and a biased proportional navigation guidance is proposed. Compared with the existing terminal guidance methods, the proposed guidance strategy balances the performances about flight optimality, on-board implementation capability, and impact angle satisfaction when high dynamical nonlinearity is considered. Simulations are given to validate the effectiveness of the proposed techniques, and demonstrate the advantages of the algorithm on optimality, real-time performance, and impact angle satisfaction in nonlinear cases. |
|---|---|
| AbstractList | The terminal guidance problem considering nonlinearity, optimality, and impact angle constraints is investigated. First, the conditions for optimal guidance in the longitudinal plane are derived based on the Pontryagin's maximum principle, and then the to-be-solved two-point boundary value problem is equivalent to a backward integration problem. Then, analytical boundaries are given to initialize the states for backward integration. Based on the easily accessible dataset, a neural network is trained to approximate the optimal guidance commands. Lastly, an optimal terminal guidance scheme combined with the neural network and a biased proportional navigation guidance is proposed. Compared with the existing terminal guidance methods, the proposed guidance strategy balances the performances about flight optimality, on-board implementation capability, and impact angle satisfaction when high dynamical nonlinearity is considered. Simulations are given to validate the effectiveness of the proposed techniques, and demonstrate the advantages of the algorithm on optimality, real-time performance, and impact angle satisfaction in nonlinear cases. |
| Author | Gong, Shengping Huang, Xu Cheng, Lin Wang, Han |
| Author_xml | – sequence: 1 givenname: Lin orcidid: 0000-0001-8090-2562 surname: Cheng fullname: Cheng, Lin email: chenglin5580@buaa.edu.cn organization: School of Astronautics, Beihang University, Beijing, China – sequence: 2 givenname: Han orcidid: 0009-0008-4257-2783 surname: Wang fullname: Wang, Han email: kingham@buaa.edu.cn organization: School of Astronautics, Beihang University, Beijing, China – sequence: 3 givenname: Shengping orcidid: 0000-0002-1910-2918 surname: Gong fullname: Gong, Shengping email: gongsp@buaa.edu.cn organization: School of Astronautics, Beihang University, Beijing, China – sequence: 4 givenname: Xu orcidid: 0000-0002-5777-9313 surname: Huang fullname: Huang, Xu email: xunudt@126.com organization: School of Astronautics, Beihang University, Beijing, China |
| BookMark | eNp9kE9PAjEQxRuDiYB-ABMPm3he7N_t9ogEkYTAQdTjpltmtbh0se3G-O1dAgfjwdPMJO83M-8NUM81DhC6JnhECFZ36_H0aUQxZSPGaC5kdob6RAiZqgyzHupjTPJUUUEu0CCEbTfynLM-ellC63WdLiF-Nf4jvdcBNsmycbV1oH2y2ke703WyBr-zrmtmrd1oZyB5tfE9me_22sRk7N5qSCaNC9Fr62K4ROeVrgNcneoQPT9M15PHdLGazSfjRWqo4jHNsKBdZ4AKI7limSIlMKNKLSVhXJRccOCyFFWJc6xppjCISpYVMzLXoNkQ3R737n3z2UKIxbZpffdnKKiiHLMMU9ypyFFlfBOCh6rY-86V_y4ILg7xFYf4ikN8xSm-jpF_GGOjjrZxB4v1v-TNkbQA8OsSw0R0Hn8AssB-1A |
| CODEN | IEARAX |
| CitedBy_id | crossref_primary_10_1177_09544100251350405 crossref_primary_10_1109_TAES_2025_3551283 crossref_primary_10_1002_rnc_70147 crossref_primary_10_1177_09544100251362515 crossref_primary_10_1016_j_dt_2025_04_020 crossref_primary_10_1016_j_ast_2025_110410 crossref_primary_10_1016_j_ast_2024_109857 crossref_primary_10_1016_j_conengprac_2025_106469 crossref_primary_10_1109_TAES_2025_3532252 crossref_primary_10_1016_j_ast_2025_110049 crossref_primary_10_1016_j_ast_2024_109738 crossref_primary_10_1109_TAES_2025_3540032 |
| Cites_doi | 10.2514/1.G000766 10.2514/3.3199 10.2514/1.32836 10.2514/1.52105 10.1109/7.640285 10.2514/1.37864 10.2514/1.g001759 10.2514/1.G006666 10.2514/1.59139 10.2514/1.62737 10.2514/1.g005868 10.2514/1.59252 10.1109/TAES.2018.2843600 10.1109/TAES.2013.6404092 10.2514/1.51026 10.1016/j.arcontrol.2022.04.006 10.2514/1.8392 10.1109/TAES.2016.150415 10.1109/TAES.1973.309659 10.2514/1.55242 10.2514/1.58454 10.1016/j.isatra.2015.12.018 10.1109/TCST.2006.872525 10.1016/j.neucom.2007.07.024 10.2514/1.45026 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
| DOI | 10.1109/TAES.2023.3328576 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9603 |
| EndPage | 830 |
| ExternalDocumentID | 10_1109_TAES_2023_3328576 10301549 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62003364 funderid: 10.13039/501100001809 – fundername: Shanghai Academy of Spaceflight Technology grantid: SAST2022-050 funderid: 10.13039/100009101 |
| GroupedDBID | -~X 0R~ 29I 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
| ID | FETCH-LOGICAL-c294t-6052c29ce25c7493691be3c9ba771345b454e47b5fb080a2690e5f7bf3c78aea3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001173889500061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9251 |
| IngestDate | Mon Jun 30 10:15:09 EDT 2025 Tue Nov 18 22:20:17 EST 2025 Sat Nov 29 01:51:37 EST 2025 Wed Aug 27 02:09:42 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-6052c29ce25c7493691be3c9ba771345b454e47b5fb080a2690e5f7bf3c78aea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0008-4257-2783 0000-0002-1910-2918 0000-0001-8090-2562 0000-0002-5777-9313 |
| PQID | 2924036020 |
| PQPubID | 85477 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2924036020 crossref_primary_10_1109_TAES_2023_3328576 crossref_citationtrail_10_1109_TAES_2023_3328576 ieee_primary_10301549 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on aerospace and electronic systems |
| PublicationTitleAbbrev | T-AES |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref15 ref36 ref30 Min (ref9) 2007; 8 ref11 ref33 Chen (ref14) 2023; 360 White (ref29) 2011; 44 ref2 ref1 Kim (ref10) 2011; 44 Ryoo (ref27) 2009; 42 ref17 ref39 ref16 ref18 Cheng (ref38) 2020; 170 Cheng (ref37) 2019; 55 ref24 ref23 ref26 ref25 Chen (ref31) 2019; 84 ref22 Cheng (ref35) 2021; 57 ref21 Han (ref12) 2020; 97 Li (ref32) 2020; 106 ref28 ref8 ref7 ref4 Yang (ref20) 2022; 131 ref3 Hu (ref13) 2021; 114 ref6 ref5 ref40 Cheng (ref34) 2020; 56 Cheng (ref19) 2018; 31 |
| References_xml | – ident: ref6 doi: 10.2514/1.G000766 – ident: ref1 doi: 10.2514/3.3199 – volume: 131 start-page: 476 volume-title: ISA Trans. year: 2022 ident: ref20 article-title: Three-dimensional nonsingular impact angle guidance strategy with physical constraints – ident: ref26 doi: 10.2514/1.32836 – ident: ref4 doi: 10.2514/1.52105 – ident: ref7 doi: 10.1109/7.640285 – ident: ref2 doi: 10.2514/1.37864 – ident: ref30 doi: 10.2514/1.g001759 – ident: ref39 doi: 10.2514/1.G006666 – volume: 44 start-page: 3915 issue: 1 volume-title: IFAC Proc. Volumes year: 2011 ident: ref10 article-title: Time-to-go polynomial guidance laws with terminal impact angle/acceleration constraints – ident: ref28 doi: 10.2514/1.59139 – ident: ref17 doi: 10.2514/1.62737 – volume: 170 start-page: 66 volume-title: Acta Astronautica year: 2020 ident: ref38 article-title: Real-time optimal control for irregular asteroid landings using deep neural networks – volume: 114 volume-title: Aerosp. Sci. Technol. year: 2021 ident: ref13 article-title: Field-of-view limited guidance with impact angle constraint and feasibility analysis – volume: 55 start-page: 2436 issue: 5 volume-title: IEEE Trans. Aerosp. Electron. Syst. year: 2019 ident: ref37 article-title: Real-time optimal control for spacecraft orbit transfer via multiscale deep neural networks – ident: ref33 doi: 10.2514/1.g005868 – ident: ref5 doi: 10.2514/1.59252 – ident: ref21 doi: 10.1109/TAES.2018.2843600 – ident: ref11 doi: 10.1109/TAES.2013.6404092 – volume: 97 volume-title: Aerosp. Sci. Technol. year: 2020 ident: ref12 article-title: Analytical solution of field-of-view limited guidance with constrained impact and capturability analysis – ident: ref15 doi: 10.2514/1.51026 – ident: ref36 doi: 10.1016/j.arcontrol.2022.04.006 – ident: ref23 doi: 10.2514/1.8392 – ident: ref25 doi: 10.1109/TAES.2016.150415 – volume: 44 start-page: 3909 issue: 1 volume-title: IFAC Proc. Volumes year: 2011 ident: ref29 article-title: Optimal guidance solution for impact angle control based on linearization about collision triangle – ident: ref22 doi: 10.1109/TAES.1973.309659 – volume: 360 start-page: 4923 issue: 7 volume-title: J. Franklin Inst. year: 2023 ident: ref14 article-title: Impact angle, speed and acceleration control guidance via polynomial trajectory shaping – volume: 57 start-page: 325 issue: 1 volume-title: IEEE Trans. Aerosp. Electron. Syst. year: 2021 ident: ref35 article-title: Multiconstrained real-time entry guidance using deep neural networks – ident: ref16 doi: 10.2514/1.55242 – volume: 56 start-page: 2642 issue: 4 volume-title: IEEE Trans. Aerosp. Electron. Syst. year: 2020 ident: ref34 article-title: Fast generation of optimal asteroid landing trajectories using deep neural networks – ident: ref8 doi: 10.2514/1.58454 – ident: ref18 doi: 10.1016/j.isatra.2015.12.018 – volume: 8 start-page: 46 issue: 1 volume-title: Int. J. Aeronautical Space Sci. year: 2007 ident: ref9 article-title: Guidance law for vision-based automatic landing of UAV – volume: 42 start-page: 321 issue: 2 volume-title: IFAC Proc. Volumes year: 2009 ident: ref27 article-title: Optimal guidance law: Impact angle & terminal lateral acceleration control – ident: ref24 doi: 10.1109/TCST.2006.872525 – volume: 84 start-page: 454 volume-title: Aerosp. Sci. Technol. year: 2019 ident: ref31 article-title: Optimal control based guidance law to control both impact time and impact angle – volume: 106 volume-title: Aerosp. Sci. Technol. year: 2020 ident: ref32 article-title: Collision-geometry-based generalized optimal impact angle guidance for various missile and target motions – ident: ref40 doi: 10.1016/j.neucom.2007.07.024 – volume: 31 start-page: 765 issue: 4 volume-title: Chin. J. Aeronaut. year: 2018 ident: ref19 article-title: Lyapunov-based switched-gain impact angle control guidance – ident: ref3 doi: 10.2514/1.45026 |
| SSID | ssj0014843 |
| Score | 2.4842174 |
| Snippet | The terminal guidance problem considering nonlinearity, optimality, and impact angle constraints is investigated. First, the conditions for optimal guidance in... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 819 |
| SubjectTerms | Algorithms Boundary value problems Deep neural networks Gravity Impact angle impact angle constraint Indexes Maximum principle Missiles Navigation Neural networks Nonlinearity optimal control optimal guidance Optimization Proportional navigation Real-time systems Terminal guidance Trajectory |
| Title | Neural-Network-Based Nonlinear Optimal Terminal Guidance With Impact Angle Constraints |
| URI | https://ieeexplore.ieee.org/document/10301549 https://www.proquest.com/docview/2924036020 |
| Volume | 60 |
| WOSCitedRecordID | wos001173889500061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014843 issn: 0018-9251 databaseCode: RIE dateStart: 19650101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxOnU3LwJGRrm7Rpj1M2FaQKTt2tJGmig9rJ1vn3m49uDETBWwpJCHlJ3nt97_1-AFwIj4gEMx_lnAaIRLmHYt8XSFCl1Z1SOI9sofA9TdN4PE4e62J1WwsjpbTJZ7JrmjaWn0_Fwvwq6xlKLAMp1gANSiNXrLUKGZC4TpHz9Q3WWrsOYfpe0hv1B09dwxPexTiIQ4MvsqaELKvKj6fY6pfh7j9Xtgd2akMS9p3k98GGLA_A9hq84CF4McgbrECpS_VGV1pj5TB14BhsBh_0c_Gh5xi5hJgC3iwmuTkF8HVSvcM7W0AJ--VbIaEh9rR0EtW8BZ6Hg9H1Lap5FJAIElIh7bEEuiVkEApKDIOfzyUWCWfUVJKGnIREEspDxbX9yALtMMtQUa6woDGTDB-BZjkt5TGAeUCUpJTTXGnPTGp_SOhP7IeMqwT7qg285cZmogYZN4srMutseElmZJEZWWS1LNrgcjXk0yFs_NW5ZTZ_raPb9zboLMWX1ZdwngWJARuMtEF88suwU7ClZycuC7sDmtVsIc_ApviqJvPZuT1f336czH8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90CuqDnxOnU_Pgk5DZJunSPk6ZTpxVcH68lSZNdDA32Tr_fpO0joEo-JZC0oa7JJfr3f1-ACfSYzKiqY8zwQlmzczDoe9LLLk25k5rmjVdoXCXx3H48hLdl8XqrhZGKeWSz1TDNl0sPxvJqf1VdmYpsSyk2CIsBYwRryjXmgUNWFgmyflmDxu7XQYxfS8667XaDw3LFN6glISBRRiZM0OOV-XHYewszOXGP-e2CevlVRK1Ct1vwYIabsPaHMDgDjxZ7I10gOMi2RufG5uVobiAx0jH6M4cGO_mHb0iJWaArqb9zK4D9NzP39C1K6FEreHrQCFL7ekIJfJJFR4v272LDi6ZFLAkEcux8VmIaUlFAsmZ5fDzhaIyEim3taSBYAFTjItAC3ODTIlxmVWgudBU8jBVKd2FynA0VHuAMsK04lzwTBvfTBmPSJpH6gep0BH1dQ28b8EmsoQZt5MbJM7d8KLE6iKxukhKXdTgdDbko8DY-Ktz1Qp_rmMh9xrUv9WXlNtwkpDIwg02zZV4_5dhx7DS6d12k-51fHMAq-ZLrMjJrkMlH0_VISzLz7w_GR-5tfYFTR3Pxg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-Network-Based+Nonlinear+Optimal+Terminal+Guidance+With+Impact+Angle+Constraints&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Cheng%2C+Lin&rft.au=Wang%2C+Han&rft.au=Gong%2C+Shengping&rft.au=Huang%2C+Xu&rft.date=2024-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9251&rft.eissn=1557-9603&rft.volume=60&rft.issue=1&rft.spage=819&rft_id=info:doi/10.1109%2FTAES.2023.3328576&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon |