Handling information loss of graph convolutional networks in collaborative filtering

Collaborative filtering (CF) methods based on graph convolutional network (GCN) and autoencoder (AE) achieve outstanding performance. But the GCN-based CF methods suffer from information loss problems, which are caused by information lossy initialization and using low-order Chebyshev Polynomial to f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information systems (Oxford) Jg. 109; S. 102051
Hauptverfasser: Xiong, Xin, Li, XunKai, Hu, YouPeng, Wu, YiXuan, Yin, Jian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.11.2022
Schlagworte:
ISSN:0306-4379, 1873-6076
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Collaborative filtering (CF) methods based on graph convolutional network (GCN) and autoencoder (AE) achieve outstanding performance. But the GCN-based CF methods suffer from information loss problems, which are caused by information lossy initialization and using low-order Chebyshev Polynomial to fit the graph convolution kernel. And the AE-based CF methods obtain the prediction results by reconstructing the user-item interaction matrix, which does not conduct deep excavation of the behavior patterns, resulting in the limited-expression ability. To solve the above problems, we propose Variational AutoEncoder-Enhanced Graph Convolutional Network (VE-GCN) for CF. Specifically, we use a variational autoencoder (VAE) to compress the interactive behavior patterns as the prior information of GCN to achieve sufficient learning, thus alleviating the information lossy initialization problem. And then the generalized graph Laplacian convolution kernel is proposed in GCN to handle the high-frequency information loss problem caused by Chebyshev Polynomial fitting in the GCN-based CF. To the best of our knowledge, VE-GCN is a feasible method to handle the information loss problems mentioned above in GCN-based CF for the first time. Meanwhile, the structure of GCN is optimized by removing redundant feature transformation and nonlinear activation function, and using DenseGCN to complete multi-level information interaction. Experiments on four real-world datasets show that the VE-GCN achieves state-of-the-art performance. •The information loss in Graph Convolutional Network-based Collaborative Filtering.•The enhanced Graph Convolutional Network.•The optimized Laplacian convolution kernel.•The optimized information propagation framework of Graph Convolutional Network.
AbstractList Collaborative filtering (CF) methods based on graph convolutional network (GCN) and autoencoder (AE) achieve outstanding performance. But the GCN-based CF methods suffer from information loss problems, which are caused by information lossy initialization and using low-order Chebyshev Polynomial to fit the graph convolution kernel. And the AE-based CF methods obtain the prediction results by reconstructing the user-item interaction matrix, which does not conduct deep excavation of the behavior patterns, resulting in the limited-expression ability. To solve the above problems, we propose Variational AutoEncoder-Enhanced Graph Convolutional Network (VE-GCN) for CF. Specifically, we use a variational autoencoder (VAE) to compress the interactive behavior patterns as the prior information of GCN to achieve sufficient learning, thus alleviating the information lossy initialization problem. And then the generalized graph Laplacian convolution kernel is proposed in GCN to handle the high-frequency information loss problem caused by Chebyshev Polynomial fitting in the GCN-based CF. To the best of our knowledge, VE-GCN is a feasible method to handle the information loss problems mentioned above in GCN-based CF for the first time. Meanwhile, the structure of GCN is optimized by removing redundant feature transformation and nonlinear activation function, and using DenseGCN to complete multi-level information interaction. Experiments on four real-world datasets show that the VE-GCN achieves state-of-the-art performance. •The information loss in Graph Convolutional Network-based Collaborative Filtering.•The enhanced Graph Convolutional Network.•The optimized Laplacian convolution kernel.•The optimized information propagation framework of Graph Convolutional Network.
ArticleNumber 102051
Author Yin, Jian
Hu, YouPeng
Li, XunKai
Wu, YiXuan
Xiong, Xin
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0002-3072-7302
  surname: Xiong
  fullname: Xiong, Xin
  email: xiongxin@smail.nju.edu.cn
  organization: Nanjing University, School of Artificial Intelligence, No.163 Xianlin Avenue, Qixia District, Nanjing City, Jiangsu Province, China
– sequence: 2
  givenname: XunKai
  orcidid: 0000-0002-1230-7603
  surname: Li
  fullname: Li, XunKai
  email: lxk_yb@163.com
  organization: Shandong University, School of Mechanical, Electrical and Information Engineering, No.180 Wenhua West Road, Weihai City, Shandong Province, China
– sequence: 3
  givenname: YouPeng
  orcidid: 0000-0003-2097-5879
  surname: Hu
  fullname: Hu, YouPeng
  email: yoooooohu@gmail.com
  organization: Shandong University, School of Mechanical, Electrical and Information Engineering, No.180 Wenhua West Road, Weihai City, Shandong Province, China
– sequence: 4
  givenname: YiXuan
  orcidid: 0000-0001-8364-3228
  surname: Wu
  fullname: Wu, YiXuan
  email: beixuan_wh@163.com
  organization: Zhejiang University, Polytechnic Institute, No. 269 Shixiang Road, Hangzhou City, Zhejiang Province, China
– sequence: 5
  givenname: Jian
  orcidid: 0000-0002-4820-0226
  surname: Yin
  fullname: Yin, Jian
  email: yinjian@sdu.edu.cn
  organization: Shandong University, School of Mechanical, Electrical and Information Engineering, No.180 Wenhua West Road, Weihai City, Shandong Province, China
BookMark eNp9kEFPAyEUhImpiW317pE_sPUBXXbxZhq1Jk281DNhWahUCg2sNf57qfVkoqeXyeSbvJkJGoUYDELXBGYECL_ZzlyeUaC0SAo1OUNj0jas4tDwERoDA17NWSMu0CTnLQDQWogxWi9V6L0LG-yCjWmnBhcD9jFnHC3eJLV_xTqGQ_TvR0d5HMzwEdNbLkBxvFddTIU6GGydH0wqWZfo3CqfzdXPnaKXh_v1Ylmtnh-fFnerSlMxH6padX2vLDFWtExbPeeWtF3b1YyC6kzTEKY5EQa6vlZNTYSlQtdt37WgueWMTRE_5epUHk7GSu2G7wZDUs5LAvK4jdxKl-VxG3napoDwC9wnt1Pp8z_k9oSYUujgTJJZOxO06V0yepB9dH_DX_v0f7I
CitedBy_id crossref_primary_10_1007_s00521_023_08958_3
crossref_primary_10_1016_j_neucom_2025_129546
crossref_primary_10_1016_j_is_2023_102335
crossref_primary_10_1155_2022_7787633
crossref_primary_10_1016_j_is_2023_102322
crossref_primary_10_1109_ACCESS_2024_3365549
crossref_primary_10_1016_j_is_2024_102488
Cites_doi 10.7551/mitpress/1113.003.0010
10.1145/3038912.3052569
10.1145/3178876.3186150
10.1145/3397271.3401063
10.1609/aaai.v33i01.330161
10.1038/44565
10.1609/aaai.v34i01.5330
10.1145/3394486.3403170
10.1145/371920.372071
10.24963/ijcai.2019/630
10.1145/3394486.3403140
10.1109/MC.2009.263
10.1145/3331184.3331267
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.is.2022.102051
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-6076
ExternalDocumentID 10_1016_j_is_2022_102051
S0306437922000448
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61971268
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
13V
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
63O
7-5
71M
77K
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HF~
HLZ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SSV
SSZ
T5K
TN5
UHS
VH1
WUQ
XSW
ZCG
ZY4
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c294t-5abddaf1ef983cfc46f18b8b5320abe7713c619e0bd5a7519f29c58db80c6f633
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798811300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-4379
IngestDate Tue Nov 18 21:12:24 EST 2025
Sat Nov 29 07:25:35 EST 2025
Fri Feb 23 02:40:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variational autoencoder
Graph convolutional network
Collaborative filtering
Recommender system
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-5abddaf1ef983cfc46f18b8b5320abe7713c619e0bd5a7519f29c58db80c6f633
ORCID 0000-0002-1230-7603
0000-0002-4820-0226
0000-0002-3072-7302
0000-0001-8364-3228
0000-0003-2097-5879
ParticipantIDs crossref_citationtrail_10_1016_j_is_2022_102051
crossref_primary_10_1016_j_is_2022_102051
elsevier_sciencedirect_doi_10_1016_j_is_2022_102051
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Information systems (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kipf, Welling (b7) 2016
Kingma, Ba (b40) 2014
Pham, Cao, Klamma, Jarke (b2) 2011; 17
Kingma, Welling (b22) 2013
Li, Muller, Thabet, Ghanem (b33) 2019
Wu, Souza, Zhang, Fifty, Yu, Weinberger (b25) 2019
Berg, Kipf, Welling (b23) 2017
Koren, Bell, Volinsky (b3) 2009; 42
Fenyu Hu, Yanqiao Zhu, Shu Wu, Liang Wang, Tieniu Tan, Hierarchical graph convolutional networks for semi-supervised node classification, in: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019, pp. 4532–4539.
Herbrich (b38) 2000
Badrul Sarwar, George Karypis, Joseph Konstan, John Riedl, Item-based collaborative filtering recommendation algorithms, in: Proceedings of the 10th International Conference on World Wide Web, 2001, pp. 285–295.
Zhang, Shi, Zhao, King (b24) 2019
Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, Lars BPR Schmidt-Thieme, Bayesian personalized ranking from implicit feedback, in: Proc. of Uncertainty in Artificial Intelligence, 2014, pp. 452–461.
Yun, Jing, Gang (b4) 2019; 36
Scholz (b31) 2006
Ganqu Cui, Jie Zhou, Cheng Yang, Zhiyuan Liu, Adaptive graph encoder for attributed graph embedding, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2020, pp. 976–985.
Tianwen Chen, RaymondChi-Wing Wong, Handling information loss of graph neural networks for session-based recommendation, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 1172–1180.
Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, Meng Wang, Lightgcn: Simplifying and powering graph convolution network for recommendation, in: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 639–648.
Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, Tat-Seng Chua, Neural collaborative filtering, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 173–182.
Powers (b37) 2011
Lee, Seung (b6) 1999; 401
Yu, Qin (b26) 2020
He, Du, Wang, Tian, Tang, Chua (b14) 2018
Rong, Huang, Xu, Huang (b16) 2020
Xia, Li, Gu, Lu, Zhang, Gu (b19) 2021
Xavier Glorot, Yoshua Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010, pp. 249–256.
Lei Chen, Le Wu, Richang Hong, Kun Zhang, Meng Wang, Revisiting graph based collaborative filtering: A linear residual graph convolutional network approach, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 27–34.
Peng, Mine (b21) 2020
Jenatton, Roux, Bordes, Obozinski (b5) 2012
Vahdat, Kautz (b29) 2020; 33
Veličković, Cucurull, Casanova, Romero, Lio, Bengio (b9) 2017
Defferrard, Bresson, Vandergheynst (b35) 2016
X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS), 2011, pp. 315–323.
Higgins, Matthey, Pal, Burgess, Glorot, Botvinick, Mohamed, Lerchner (b27) 2017
Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, Tony Jebara, Variational autoencoders for collaborative filtering, in: Proceedings of the 2018 World Wide Web Conference, 2018, pp. 689–698.
Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, Tat-Seng Chua, Neural graph collaborative filtering, in: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp. 165–174.
Bo, Wang, Shi, Shen (b18) 2021
Zhi-Hong Deng, Ling Huang, Chang-Dong Wang, Jian-Huang Lai, S Yu Philip, Deepcf: A unified framework of representation learning and matching function learning in recommender system, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 61–68.
Hamilton, Ying, Leskovec (b8) 2017
Chen, Li, Grosse, Duvenaud (b28) 2018
Yu (10.1016/j.is.2022.102051_b26) 2020
Jenatton (10.1016/j.is.2022.102051_b5) 2012
Vahdat (10.1016/j.is.2022.102051_b29) 2020; 33
Herbrich (10.1016/j.is.2022.102051_b38) 2000
Scholz (10.1016/j.is.2022.102051_b31) 2006
Higgins (10.1016/j.is.2022.102051_b27) 2017
Peng (10.1016/j.is.2022.102051_b21) 2020
Bo (10.1016/j.is.2022.102051_b18) 2021
Li (10.1016/j.is.2022.102051_b33) 2019
Zhang (10.1016/j.is.2022.102051_b24) 2019
Berg (10.1016/j.is.2022.102051_b23) 2017
Wu (10.1016/j.is.2022.102051_b25) 2019
Powers (10.1016/j.is.2022.102051_b37) 2011
Yun (10.1016/j.is.2022.102051_b4) 2019; 36
Veličković (10.1016/j.is.2022.102051_b9) 2017
10.1016/j.is.2022.102051_b20
Kipf (10.1016/j.is.2022.102051_b7) 2016
Lee (10.1016/j.is.2022.102051_b6) 1999; 401
Xia (10.1016/j.is.2022.102051_b19) 2021
Hamilton (10.1016/j.is.2022.102051_b8) 2017
Kingma (10.1016/j.is.2022.102051_b22) 2013
10.1016/j.is.2022.102051_b1
Pham (10.1016/j.is.2022.102051_b2) 2011; 17
Defferrard (10.1016/j.is.2022.102051_b35) 2016
10.1016/j.is.2022.102051_b36
10.1016/j.is.2022.102051_b13
10.1016/j.is.2022.102051_b12
10.1016/j.is.2022.102051_b34
10.1016/j.is.2022.102051_b11
He (10.1016/j.is.2022.102051_b14) 2018
10.1016/j.is.2022.102051_b17
10.1016/j.is.2022.102051_b39
Chen (10.1016/j.is.2022.102051_b28) 2018
10.1016/j.is.2022.102051_b15
Koren (10.1016/j.is.2022.102051_b3) 2009; 42
Kingma (10.1016/j.is.2022.102051_b40) 2014
10.1016/j.is.2022.102051_b10
10.1016/j.is.2022.102051_b32
10.1016/j.is.2022.102051_b30
Rong (10.1016/j.is.2022.102051_b16) 2020
References_xml – start-page: 9266
  year: 2019
  end-page: 9275
  ident: b33
  article-title: Deepgcns: Can GCNs go as deep as CNNs?
  publication-title: 2019 IEEE/CVF International Conference on Computer Vision (ICCV)
– reference: Tianwen Chen, RaymondChi-Wing Wong, Handling information loss of graph neural networks for session-based recommendation, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 1172–1180.
– year: 2017
  ident: b23
  article-title: Graph convolutional matrix completion
– year: 2006
  ident: b31
  article-title: Maximum likelihood estimation
  publication-title: Wiley StatsRef: Statist. Ref. Online
– year: 2016
  ident: b7
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: b6
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 36
  start-page: 245
  year: 2019
  end-page: 250
  ident: b4
  article-title: Recommendation algorithm based on funksvd matrix decomposition and similarity matrix
  publication-title: Jisuanji Yingyong Yuruanjian
– start-page: 115
  year: 2000
  end-page: 132
  ident: b38
  article-title: Large margin rank boundaries for ordinal regression
  publication-title: Adv. Large Margin Classif.
– reference: Badrul Sarwar, George Karypis, Joseph Konstan, John Riedl, Item-based collaborative filtering recommendation algorithms, in: Proceedings of the 10th International Conference on World Wide Web, 2001, pp. 285–295.
– volume: 42
  start-page: 30
  year: 2009
  end-page: 37
  ident: b3
  article-title: Matrix factorization techniques for recommender systems
  publication-title: Computer
– reference: Lei Chen, Le Wu, Richang Hong, Kun Zhang, Meng Wang, Revisiting graph based collaborative filtering: A linear residual graph convolutional network approach, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 27–34.
– year: 2017
  ident: b8
  article-title: Inductive representation learning on large graphs
– reference: Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, Meng Wang, Lightgcn: Simplifying and powering graph convolution network for recommendation, in: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 639–648.
– year: 2020
  ident: b21
  article-title: A robust hierarchical graph convolutional network model for collaborative filtering
– year: 2021
  ident: b18
  article-title: Beyond low-frequency information in graph convolutional networks
– reference: Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, Lars BPR Schmidt-Thieme, Bayesian personalized ranking from implicit feedback, in: Proc. of Uncertainty in Artificial Intelligence, 2014, pp. 452–461.
– year: 2017
  ident: b9
  article-title: Graph attention networks
– year: 2019
  ident: b24
  article-title: STAR-GCN: Stacked and reconstructed graph convolutional networks for recommender systems
– year: 2018
  ident: b14
  article-title: Outer product-based neural collaborative filtering
– year: 2020
  ident: b16
  article-title: DropEdge: TOwards deep graph convolutional networks on node classification
  publication-title: ICLR 2020 : Eighth International Conference on Learning Representations
– reference: Fenyu Hu, Yanqiao Zhu, Shu Wu, Liang Wang, Tieniu Tan, Hierarchical graph convolutional networks for semi-supervised node classification, in: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019, pp. 4532–4539.
– year: 2018
  ident: b28
  article-title: Isolating sources of disentanglement in variational autoencoders
  publication-title: ICLR (Workshop)
– reference: X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS), 2011, pp. 315–323.
– reference: Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, Tony Jebara, Variational autoencoders for collaborative filtering, in: Proceedings of the 2018 World Wide Web Conference, 2018, pp. 689–698.
– reference: Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, Tat-Seng Chua, Neural collaborative filtering, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 173–182.
– reference: Ganqu Cui, Jie Zhou, Cheng Yang, Zhiyuan Liu, Adaptive graph encoder for attributed graph embedding, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2020, pp. 976–985.
– reference: Zhi-Hong Deng, Ling Huang, Chang-Dong Wang, Jian-Huang Lai, S Yu Philip, Deepcf: A unified framework of representation learning and matching function learning in recommender system, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 61–68.
– reference: Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, Tat-Seng Chua, Neural graph collaborative filtering, in: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp. 165–174.
– start-page: 6861
  year: 2019
  end-page: 6871
  ident: b25
  article-title: Simplifying graph convolutional networks
  publication-title: International Conference on Machine Learning
– volume: 33
  start-page: 19667
  year: 2020
  end-page: 19679
  ident: b29
  article-title: NVAE: A Deep hierarchical variational autoencoder
  publication-title: Advances in Neural Information Processing Systems
– year: 2016
  ident: b35
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– year: 2014
  ident: b40
  article-title: Adam: A method for stochastic optimization
– start-page: 2170
  year: 2021
  end-page: 2179
  ident: b19
  article-title: Incremental graph convolutional network for collaborative filtering
  publication-title: Proceedings of the 30th ACM International Conference on Information & Knowledge Management
– year: 2013
  ident: b22
  article-title: Auto-encoding variational bayes
– year: 2017
  ident: b27
  article-title: Beta-VAE: Learning basic visual concepts with a constrained variational framework
  publication-title: ICLR 2017 : International Conference on Learning Representations 2017
– start-page: 10936
  year: 2020
  end-page: 10945
  ident: b26
  article-title: Graph convolutional network for recommendation with low-pass collaborative filters
  publication-title: ICML 2020: 37th International Conference on Machine Learning, Vol. 1
– volume: 17
  start-page: 583
  year: 2011
  end-page: 604
  ident: b2
  article-title: A clustering approach for collaborative filtering recommendation using social network analysis
  publication-title: J. UCS
– start-page: 37
  year: 2011
  end-page: 63
  ident: b37
  article-title: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation
– reference: Xavier Glorot, Yoshua Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010, pp. 249–256.
– start-page: 3167
  year: 2012
  end-page: 3175
  ident: b5
  article-title: A latent factor model for highly multi-relational data
  publication-title: Advances in Neural Information Processing Systems 25, Vol. 25
– year: 2020
  ident: 10.1016/j.is.2022.102051_b16
  article-title: DropEdge: TOwards deep graph convolutional networks on node classification
– start-page: 115
  year: 2000
  ident: 10.1016/j.is.2022.102051_b38
  article-title: Large margin rank boundaries for ordinal regression
  publication-title: Adv. Large Margin Classif.
  doi: 10.7551/mitpress/1113.003.0010
– ident: 10.1016/j.is.2022.102051_b13
  doi: 10.1145/3038912.3052569
– year: 2017
  ident: 10.1016/j.is.2022.102051_b23
– ident: 10.1016/j.is.2022.102051_b30
– ident: 10.1016/j.is.2022.102051_b32
  doi: 10.1145/3178876.3186150
– year: 2006
  ident: 10.1016/j.is.2022.102051_b31
  article-title: Maximum likelihood estimation
  publication-title: Wiley StatsRef: Statist. Ref. Online
– year: 2016
  ident: 10.1016/j.is.2022.102051_b35
– ident: 10.1016/j.is.2022.102051_b34
– ident: 10.1016/j.is.2022.102051_b11
  doi: 10.1145/3397271.3401063
– year: 2018
  ident: 10.1016/j.is.2022.102051_b28
  article-title: Isolating sources of disentanglement in variational autoencoders
– ident: 10.1016/j.is.2022.102051_b39
– start-page: 2170
  year: 2021
  ident: 10.1016/j.is.2022.102051_b19
  article-title: Incremental graph convolutional network for collaborative filtering
– start-page: 37
  year: 2011
  ident: 10.1016/j.is.2022.102051_b37
– volume: 17
  start-page: 583
  year: 2011
  ident: 10.1016/j.is.2022.102051_b2
  article-title: A clustering approach for collaborative filtering recommendation using social network analysis
  publication-title: J. UCS
– ident: 10.1016/j.is.2022.102051_b36
  doi: 10.1609/aaai.v33i01.330161
– year: 2018
  ident: 10.1016/j.is.2022.102051_b14
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 10.1016/j.is.2022.102051_b6
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– ident: 10.1016/j.is.2022.102051_b12
  doi: 10.1609/aaai.v34i01.5330
– start-page: 3167
  year: 2012
  ident: 10.1016/j.is.2022.102051_b5
  article-title: A latent factor model for highly multi-relational data
– ident: 10.1016/j.is.2022.102051_b20
  doi: 10.1145/3394486.3403170
– year: 2017
  ident: 10.1016/j.is.2022.102051_b8
– start-page: 10936
  year: 2020
  ident: 10.1016/j.is.2022.102051_b26
  article-title: Graph convolutional network for recommendation with low-pass collaborative filters
– year: 2021
  ident: 10.1016/j.is.2022.102051_b18
– start-page: 9266
  year: 2019
  ident: 10.1016/j.is.2022.102051_b33
  article-title: Deepgcns: Can GCNs go as deep as CNNs?
– year: 2017
  ident: 10.1016/j.is.2022.102051_b9
– ident: 10.1016/j.is.2022.102051_b1
  doi: 10.1145/371920.372071
– start-page: 6861
  year: 2019
  ident: 10.1016/j.is.2022.102051_b25
  article-title: Simplifying graph convolutional networks
– year: 2014
  ident: 10.1016/j.is.2022.102051_b40
– year: 2017
  ident: 10.1016/j.is.2022.102051_b27
  article-title: Beta-VAE: Learning basic visual concepts with a constrained variational framework
– ident: 10.1016/j.is.2022.102051_b17
  doi: 10.24963/ijcai.2019/630
– ident: 10.1016/j.is.2022.102051_b15
  doi: 10.1145/3394486.3403140
– volume: 42
  start-page: 30
  issue: 8
  year: 2009
  ident: 10.1016/j.is.2022.102051_b3
  article-title: Matrix factorization techniques for recommender systems
  publication-title: Computer
  doi: 10.1109/MC.2009.263
– year: 2019
  ident: 10.1016/j.is.2022.102051_b24
– volume: 36
  start-page: 245
  issue: 12
  year: 2019
  ident: 10.1016/j.is.2022.102051_b4
  article-title: Recommendation algorithm based on funksvd matrix decomposition and similarity matrix
  publication-title: Jisuanji Yingyong Yuruanjian
– volume: 33
  start-page: 19667
  year: 2020
  ident: 10.1016/j.is.2022.102051_b29
  article-title: NVAE: A Deep hierarchical variational autoencoder
– year: 2020
  ident: 10.1016/j.is.2022.102051_b21
– year: 2016
  ident: 10.1016/j.is.2022.102051_b7
– ident: 10.1016/j.is.2022.102051_b10
  doi: 10.1145/3331184.3331267
– year: 2013
  ident: 10.1016/j.is.2022.102051_b22
SSID ssj0002599
Score 2.405115
Snippet Collaborative filtering (CF) methods based on graph convolutional network (GCN) and autoencoder (AE) achieve outstanding performance. But the GCN-based CF...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102051
SubjectTerms Collaborative filtering
Graph convolutional network
Recommender system
Variational autoencoder
Title Handling information loss of graph convolutional networks in collaborative filtering
URI https://dx.doi.org/10.1016/j.is.2022.102051
Volume 109
WOSCitedRecordID wos000798811300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6076
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002599
  issn: 0306-4379
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VLQc4QClUFErlAxeEUrLxJrGPFSrqA1UcFpRbZDuOlFWVrbq7qD-f8SsPShE9cIkiy55Ymc-eGXv8GeD9TAupU6EjJSkGKGggIyETFTFFqcrRpDFLpP3ja355yYqChx3dlb1OIG9bdnvLr_-rqrEMlW2Ozj5A3Z1QLMB3VDo-Ue34_CfFnxreBHdSpTuZ-PEKbaHxCy0_tU01931ADbUuE9wmxg5gYejAG7OXHozbIiS992IdD7RduHUnDwcLC0Xjs32Lpk_7sbkDxaa9EE0PKGsGlptv2n_I2AhX2BQbj16_MIEx7bRbmPAHsuIsMnSHo8k25oPpEr2b2PHN3pnJ3aLCAkUdGeFHfdUxafZvxqxLMQzZa4uyWZVGQukkPILtJE85m8D28dlJcd6ZbYwDudtycr32e9ouGXDciz_7MAO_ZL4Dz3xAQY4dEF7Alm534Xm4rIP4uXsXng6YJ1_CPKCEDFBCDErIsiYWJWSEEhJQgg3ICCWkQ8kr-P7lZP75NPIXbEQq4bN1lApZVaKe6pozqmo1y-opk0yay0JwCONQpQoDbB3LKhU5-vp1wlXKKslildUZpXswaZetfg0krxOmkyoWWG8mMs6rRGc42KWiAj3IfB8-hV9WKs8-by5BuSrvU9Q-fOhaXDvmlb_UpUELpfccnUdYIpzubfXmAV94C096jB_AZH2z0e_gsfq5blY3hx5LvwAfAo7v
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Handling+information+loss+of+graph+convolutional+networks+in+collaborative+filtering&rft.jtitle=Information+systems+%28Oxford%29&rft.au=Xiong%2C+Xin&rft.au=Li%2C+XunKai&rft.au=Hu%2C+YouPeng&rft.au=Wu%2C+YiXuan&rft.date=2022-11-01&rft.issn=0306-4379&rft.volume=109&rft.spage=102051&rft_id=info:doi/10.1016%2Fj.is.2022.102051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_is_2022_102051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4379&client=summon