Improving matrix-based dynamic programming on massively parallel accelerators

Dynamic programming techniques are well-established and employed by various practical algorithms, including the edit-distance algorithm or the dynamic time warping algorithm. These algorithms usually operate in an iteration-based manner where new values are computed from values of the previous itera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information systems (Oxford) Jg. 64; S. 175 - 193
Hauptverfasser: Bednárek, David, Brabec, Michal, Kruliš, Martin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.03.2017
Schlagworte:
ISSN:0306-4379, 1873-6076
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Dynamic programming techniques are well-established and employed by various practical algorithms, including the edit-distance algorithm or the dynamic time warping algorithm. These algorithms usually operate in an iteration-based manner where new values are computed from values of the previous iteration. The data dependencies enforce synchronization which limits possibilities for internal parallel processing. In this paper, we investigate parallel approaches to processing matrix-based dynamic programming algorithms on modern multicore CPUs, Intel Xeon Phi accelerators, and general purpose GPUs. We address both the problem of computing a single distance on large inputs and the problem of computing a number of distances of smaller inputs simultaneously (e.g., when a similarity query is being resolved). Our proposed solutions yielded significant improvements in performance and achieved speedup of two orders of magnitude when compared to the serial baseline. •Dynamic programming algorithms with matrix organization (e.g., Levenshtein distance).•Employing task parallelism and SIMD/SIMT vectorization.•Proposed hierarchical algorithm optimized for CPUs, Intel Xeon Phi devices, and GPUs.•Can be efficiently parallelized if inputs are large or many distances are computed.•Experiments also determine optimal configurations for current hardware.
AbstractList Dynamic programming techniques are well-established and employed by various practical algorithms, including the edit-distance algorithm or the dynamic time warping algorithm. These algorithms usually operate in an iteration-based manner where new values are computed from values of the previous iteration. The data dependencies enforce synchronization which limits possibilities for internal parallel processing. In this paper, we investigate parallel approaches to processing matrix-based dynamic programming algorithms on modern multicore CPUs, Intel Xeon Phi accelerators, and general purpose GPUs. We address both the problem of computing a single distance on large inputs and the problem of computing a number of distances of smaller inputs simultaneously (e.g., when a similarity query is being resolved). Our proposed solutions yielded significant improvements in performance and achieved speedup of two orders of magnitude when compared to the serial baseline. •Dynamic programming algorithms with matrix organization (e.g., Levenshtein distance).•Employing task parallelism and SIMD/SIMT vectorization.•Proposed hierarchical algorithm optimized for CPUs, Intel Xeon Phi devices, and GPUs.•Can be efficiently parallelized if inputs are large or many distances are computed.•Experiments also determine optimal configurations for current hardware.
Author Brabec, Michal
Bednárek, David
Kruliš, Martin
Author_xml – sequence: 1
  givenname: David
  surname: Bednárek
  fullname: Bednárek, David
  email: bednarek@ksi.mff.cuni.cz
– sequence: 2
  givenname: Michal
  surname: Brabec
  fullname: Brabec, Michal
  email: brabec@ksi.mff.cuni.cz
– sequence: 3
  givenname: Martin
  surname: Kruliš
  fullname: Kruliš, Martin
  email: krulis@ksi.mff.cuni.cz
BookMark eNp9kM1qwzAQhEVJoUnae49-Absr2Zbt3kroH6T00p7FWtoEBdkKkgjN29chPRVaGNiFnW9hZsFmox-JsVsOBQcu73aFjYWYtgImAb9gc942ZS6hkTM2hxJkXpVNd8UWMe4AQNRdN2dvr8M--IMdt9mAKdivvMdIJjPHEQers-m4DTgMJ4MfJ0-M9kDumO0xoHPkMtSaHAVMPsRrdrlBF-nmZy7Z59Pjx-olX78_v64e1rkWXZXyGnmPVGmqeiOMlh0Q1pXmsiSBreA96K7kUEoNfStNW6NoemF4txGyBazKJYPzXx18jIE2ah_sgOGoOKhTHWqnbFSnOhRMAj4h8heibcJk_ZgCWvcfeH8GaQp0sBRU1JZGTcYG0kkZb_-GvwE96nzD
CitedBy_id crossref_primary_10_1051_e3sconf_202131503012
crossref_primary_10_1016_j_jpdc_2021_04_014
crossref_primary_10_1007_s00158_017_1822_1
crossref_primary_10_1016_j_parco_2023_103019
crossref_primary_10_1016_j_knosys_2021_107793
crossref_primary_10_1007_s10766_020_00658_y
Cites_doi 10.1007/978-3-319-25087-8_27
10.1109/ICDM.2010.21
10.1093/bioinformatics/btl582
10.1016/0022-2836(81)90087-5
10.1145/2597652.2597677
10.1016/0196-6774(85)90023-9
10.1007/978-3-319-23135-8_19
10.1145/321796.321811
10.1186/1471-2105-14-117
10.1016/j.procs.2013.05.067
10.1007/11758549_29
10.1109/JCSSE.2011.5930126
10.1111/j.1467-8659.2007.01012.x
10.1007/978-3-540-74048-3_4
10.1007/978-3-642-38718-0_38
10.1186/1471-2105-9-S2-S10
10.1016/j.jcp.2010.02.009
10.1145/316542.316550
10.1109/IPDPS.2009.5160931
10.1109/TC.1983.1676311
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.is.2016.06.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-6076
EndPage 193
ExternalDocumentID 10_1016_j_is_2016_06_001
S0306437915301897
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
13V
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
63O
7-5
71M
77K
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HF~
HLZ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SSV
SSZ
T5K
TN5
UHS
VH1
WUQ
XSW
ZCG
ZY4
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c294t-5a1bae4ce4bd2dc690ea54c163e2a821b0c931036c0b86d85a27b2d19f2680a43
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391900000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-4379
IngestDate Sat Nov 29 06:20:17 EST 2025
Tue Nov 18 22:12:23 EST 2025
Fri Feb 23 02:35:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multicore
Edit distance
Intel Xeon Phi
Dynamic time warping
Parallel
Dynamic programming
GPU
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-5a1bae4ce4bd2dc690ea54c163e2a821b0c931036c0b86d85a27b2d19f2680a43
PageCount 19
ParticipantIDs crossref_primary_10_1016_j_is_2016_06_001
crossref_citationtrail_10_1016_j_is_2016_06_001
elsevier_sciencedirect_doi_10_1016_j_is_2016_06_001
PublicationCentury 2000
PublicationDate March 2017
2017-03-00
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: March 2017
PublicationDecade 2010
PublicationTitle Information systems (Oxford)
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References NVIDIA, Kepler GPU Architecture. URL
Smith, Waterman (bib6) 1981; 147
Intel, Xeon Phi Coprocessor
Manavski, Valle (bib20) 2008; 9
Wagner, Fischer (bib3) 1974; 21
J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A.E. Lefohn, T.J. Purcell, A survey of general-purpose computation on graphics hardware, in: Computer Graphics Forum, vol. 26, Wiley Online Library, 2007, pp. 80–113.
NVIDIA, Maxwell GPU architecture. URL
D. Bednárek, M. Brabec, M. Kruliš, On parallel evaluation of matrix-based dynamic programming algorithms.
Liu, Wirawan, Schmidt (bib23) 2013; 14
Farrar (bib17) 2007; 23
L. Ligowski, W. Rudnicki, An efficient implementation of smith waterman algorithm on gpu using cuda, for massively parallel scanning of sequence databases, in: IEEE International Symposium on Parallel & Distributed Processing, 2009, IPDPS 2009, IEEE, 2009, pp. 1–8.
Ukkonen (bib12) 1985; 6
M. Zymbler, Best-match time series subsequence search on the intel many integrated core architecture, in: Advances in Databases and Information Systems, Springer, 2015, pp. 275–286.
Myers (bib7) 1999; 46
T.R. Mathies, A fast parallel algorithm to determine edit distance.
V.I. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals, Sov. Phys. Dokl. 10 (1966) 707.
Müller (bib5) 2007
G. Delgado, C. Aporntewan, Data dependency reduction in dynamic programming matrix, in: 2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE), IEEE, 2011, pp. 234–236.
Y. Liu, W. Huang, J. Johnson, S. Vaidya, Gpu accelerated Smith–Waterman, in: Computational Science—ICCS 2006, Springer, 2006, pp. 188–195.
A. Chacón, S. Marco-Sola, A. Espinosa, P. Ribeca, J.C. Moure, Thread-cooperative, bit-parallel computation of Levenshtein distance on GPU, in: Proceedings of the 28th ACM International Conference on Supercomputing, ACM, 2014, pp. 103–112.
D. Sart, A. Mueen, W. Najjar, E. Keogh, V. Niennattrakul, Accelerating dynamic time warping subsequence search with gpus and fpgas, in: 2010 IEEE 10th International Conference on Data Mining (ICDM), IEEE, 2010, pp. 1001–1006.
Khajeh-Saeed, Poole, Blair Perot (bib22) 2010; 229
.
Weste, Burr, Ackland (bib15) 1983; 32
Reinders (bib27) 2007
M. Kruliš, D. Bednárek, M. Brabec, Improving parallel processing of matrix-based similarity measures on modern gpus, in: Similarity Search and Applications, Springer, 2015, pp. 283–294.
A. Tomiyama, R. Suda, Automatic parameter optimization for edit distance algorithm on gpu, in: High Performance Computing for Computational Science-VECPAR 2012, Springer, 2013, pp. 420–434.
Xu, Cui, Hu, Guo (bib13) 2013; 17
10.1016/j.is.2016.06.001_bib14
Myers (10.1016/j.is.2016.06.001_bib7) 1999; 46
Liu (10.1016/j.is.2016.06.001_bib23) 2013; 14
10.1016/j.is.2016.06.001_bib11
10.1016/j.is.2016.06.001_bib10
Ukkonen (10.1016/j.is.2016.06.001_bib12) 1985; 6
Wagner (10.1016/j.is.2016.06.001_bib3) 1974; 21
Müller (10.1016/j.is.2016.06.001_bib5) 2007
Smith (10.1016/j.is.2016.06.001_bib6) 1981; 147
Manavski (10.1016/j.is.2016.06.001_bib20) 2008; 9
10.1016/j.is.2016.06.001_bib19
10.1016/j.is.2016.06.001_bib18
Farrar (10.1016/j.is.2016.06.001_bib17) 2007; 23
10.1016/j.is.2016.06.001_bib16
10.1016/j.is.2016.06.001_bib25
10.1016/j.is.2016.06.001_bib24
Reinders (10.1016/j.is.2016.06.001_bib27) 2007
10.1016/j.is.2016.06.001_bib21
Weste (10.1016/j.is.2016.06.001_bib15) 1983; 32
10.1016/j.is.2016.06.001_bib4
10.1016/j.is.2016.06.001_bib8
10.1016/j.is.2016.06.001_bib9
Xu (10.1016/j.is.2016.06.001_bib13) 2013; 17
10.1016/j.is.2016.06.001_bib1
10.1016/j.is.2016.06.001_bib2
Khajeh-Saeed (10.1016/j.is.2016.06.001_bib22) 2010; 229
10.1016/j.is.2016.06.001_bib26
References_xml – volume: 21
  start-page: 168
  year: 1974
  end-page: 173
  ident: bib3
  article-title: The string-to-string correction problem
  publication-title: J. ACM (JACM)
– reference: V.I. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals, Sov. Phys. Dokl. 10 (1966) 707.
– start-page: 69
  year: 2007
  end-page: 84
  ident: bib5
  article-title: Dynamic time warping
  publication-title: Inf. Retr. Music Motion
– reference: D. Bednárek, M. Brabec, M. Kruliš, On parallel evaluation of matrix-based dynamic programming algorithms.
– volume: 32
  start-page: 731
  year: 1983
  end-page: 744
  ident: bib15
  article-title: Dynamic time warp pattern matching using an integrated multiprocessing array
  publication-title: IEEE Trans. Comput.
– volume: 147
  start-page: 195
  year: 1981
  end-page: 197
  ident: bib6
  article-title: Identification of common molecular subsequences
  publication-title: J. Mol. Biol.
– reference: NVIDIA, Kepler GPU Architecture. URL 〈
– volume: 14
  start-page: 117
  year: 2013
  ident: bib23
  article-title: Cudasw++ 3.0
  publication-title: BMC Bioinform.
– volume: 6
  start-page: 132
  year: 1985
  end-page: 137
  ident: bib12
  article-title: Finding approximate patterns in strings
  publication-title: J. Algorithms
– reference: J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A.E. Lefohn, T.J. Purcell, A survey of general-purpose computation on graphics hardware, in: Computer Graphics Forum, vol. 26, Wiley Online Library, 2007, pp. 80–113.
– volume: 9
  start-page: S10
  year: 2008
  ident: bib20
  article-title: Cuda compatible gpu cards as efficient hardware accelerators for Smith–Waterman sequence alignment
  publication-title: BMC Bioinform.
– reference: M. Zymbler, Best-match time series subsequence search on the intel many integrated core architecture, in: Advances in Databases and Information Systems, Springer, 2015, pp. 275–286.
– volume: 23
  start-page: 156
  year: 2007
  end-page: 161
  ident: bib17
  article-title: Striped Smith–Waterman speeds database searches six times over other SIMD implementations
  publication-title: Bioinformatics
– reference: 〉.
– reference: NVIDIA, Maxwell GPU architecture. URL 〈
– year: 2007
  ident: bib27
  article-title: Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism
– reference: L. Ligowski, W. Rudnicki, An efficient implementation of smith waterman algorithm on gpu using cuda, for massively parallel scanning of sequence databases, in: IEEE International Symposium on Parallel & Distributed Processing, 2009, IPDPS 2009, IEEE, 2009, pp. 1–8.
– volume: 17
  start-page: 523
  year: 2013
  end-page: 529
  ident: bib13
  article-title: Bit-parallel multiple approximate string matching based on gpu
  publication-title: Proc. Comput. Sci.
– reference: Intel, Xeon Phi Coprocessor, 〈
– reference: G. Delgado, C. Aporntewan, Data dependency reduction in dynamic programming matrix, in: 2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE), IEEE, 2011, pp. 234–236.
– reference: A. Chacón, S. Marco-Sola, A. Espinosa, P. Ribeca, J.C. Moure, Thread-cooperative, bit-parallel computation of Levenshtein distance on GPU, in: Proceedings of the 28th ACM International Conference on Supercomputing, ACM, 2014, pp. 103–112.
– volume: 229
  start-page: 4247
  year: 2010
  end-page: 4258
  ident: bib22
  article-title: Acceleration of the Smith–Waterman algorithm using single and multiple graphics processors
  publication-title: J. Comput. Phys.
– reference: M. Kruliš, D. Bednárek, M. Brabec, Improving parallel processing of matrix-based similarity measures on modern gpus, in: Similarity Search and Applications, Springer, 2015, pp. 283–294.
– volume: 46
  start-page: 395
  year: 1999
  end-page: 415
  ident: bib7
  article-title: A fast bit-vector algorithm for approximate string matching based on dynamic programming
  publication-title: J. ACM (JACM)
– reference: A. Tomiyama, R. Suda, Automatic parameter optimization for edit distance algorithm on gpu, in: High Performance Computing for Computational Science-VECPAR 2012, Springer, 2013, pp. 420–434.
– reference: T.R. Mathies, A fast parallel algorithm to determine edit distance.
– reference: Y. Liu, W. Huang, J. Johnson, S. Vaidya, Gpu accelerated Smith–Waterman, in: Computational Science—ICCS 2006, Springer, 2006, pp. 188–195.
– reference: D. Sart, A. Mueen, W. Najjar, E. Keogh, V. Niennattrakul, Accelerating dynamic time warping subsequence search with gpus and fpgas, in: 2010 IEEE 10th International Conference on Data Mining (ICDM), IEEE, 2010, pp. 1001–1006.
– ident: 10.1016/j.is.2016.06.001_bib2
  doi: 10.1007/978-3-319-25087-8_27
– ident: 10.1016/j.is.2016.06.001_bib14
  doi: 10.1109/ICDM.2010.21
– ident: 10.1016/j.is.2016.06.001_bib25
– ident: 10.1016/j.is.2016.06.001_bib4
– volume: 23
  start-page: 156
  issue: 2
  year: 2007
  ident: 10.1016/j.is.2016.06.001_bib17
  article-title: Striped Smith–Waterman speeds database searches six times over other SIMD implementations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl582
– volume: 147
  start-page: 195
  issue: 1
  year: 1981
  ident: 10.1016/j.is.2016.06.001_bib6
  article-title: Identification of common molecular subsequences
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(81)90087-5
– ident: 10.1016/j.is.2016.06.001_bib11
  doi: 10.1145/2597652.2597677
– volume: 6
  start-page: 132
  issue: 1
  year: 1985
  ident: 10.1016/j.is.2016.06.001_bib12
  article-title: Finding approximate patterns in strings
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(85)90023-9
– ident: 10.1016/j.is.2016.06.001_bib16
  doi: 10.1007/978-3-319-23135-8_19
– year: 2007
  ident: 10.1016/j.is.2016.06.001_bib27
– volume: 21
  start-page: 168
  issue: 1
  year: 1974
  ident: 10.1016/j.is.2016.06.001_bib3
  article-title: The string-to-string correction problem
  publication-title: J. ACM (JACM)
  doi: 10.1145/321796.321811
– volume: 14
  start-page: 117
  issue: 1
  year: 2013
  ident: 10.1016/j.is.2016.06.001_bib23
  article-title: Cudasw++ 3.0
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-14-117
– volume: 17
  start-page: 523
  year: 2013
  ident: 10.1016/j.is.2016.06.001_bib13
  article-title: Bit-parallel multiple approximate string matching based on gpu
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2013.05.067
– ident: 10.1016/j.is.2016.06.001_bib18
  doi: 10.1007/11758549_29
– ident: 10.1016/j.is.2016.06.001_bib26
– ident: 10.1016/j.is.2016.06.001_bib24
– ident: 10.1016/j.is.2016.06.001_bib9
– ident: 10.1016/j.is.2016.06.001_bib10
  doi: 10.1109/JCSSE.2011.5930126
– ident: 10.1016/j.is.2016.06.001_bib19
  doi: 10.1111/j.1467-8659.2007.01012.x
– start-page: 69
  year: 2007
  ident: 10.1016/j.is.2016.06.001_bib5
  article-title: Dynamic time warping
  publication-title: Inf. Retr. Music Motion
  doi: 10.1007/978-3-540-74048-3_4
– ident: 10.1016/j.is.2016.06.001_bib1
– ident: 10.1016/j.is.2016.06.001_bib8
  doi: 10.1007/978-3-642-38718-0_38
– volume: 9
  start-page: S10
  issue: Suppl 2
  year: 2008
  ident: 10.1016/j.is.2016.06.001_bib20
  article-title: Cuda compatible gpu cards as efficient hardware accelerators for Smith–Waterman sequence alignment
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-9-S2-S10
– volume: 229
  start-page: 4247
  issue: 11
  year: 2010
  ident: 10.1016/j.is.2016.06.001_bib22
  article-title: Acceleration of the Smith–Waterman algorithm using single and multiple graphics processors
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.02.009
– volume: 46
  start-page: 395
  issue: 3
  year: 1999
  ident: 10.1016/j.is.2016.06.001_bib7
  article-title: A fast bit-vector algorithm for approximate string matching based on dynamic programming
  publication-title: J. ACM (JACM)
  doi: 10.1145/316542.316550
– ident: 10.1016/j.is.2016.06.001_bib21
  doi: 10.1109/IPDPS.2009.5160931
– volume: 32
  start-page: 731
  issue: 8
  year: 1983
  ident: 10.1016/j.is.2016.06.001_bib15
  article-title: Dynamic time warp pattern matching using an integrated multiprocessing array
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.1983.1676311
SSID ssj0002599
Score 2.1716766
Snippet Dynamic programming techniques are well-established and employed by various practical algorithms, including the edit-distance algorithm or the dynamic time...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 175
SubjectTerms Dynamic programming
Dynamic time warping
Edit distance
GPU
Intel Xeon Phi
Multicore
Parallel
Title Improving matrix-based dynamic programming on massively parallel accelerators
URI https://dx.doi.org/10.1016/j.is.2016.06.001
Volume 64
WOSCitedRecordID wos000391900000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6076
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002599
  issn: 0306-4379
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwELbglQMcWiggWhb5wAVVhsRxFh9LVcQiKg5FerfIsR2pW1olj-r9_I7XZ1qK6IFLFEWxY2U-ecYz38wg9JZzmfVSMULBuCCM95JwKhTpGas1GAxC9MI2m6gPDpr5nP_wEdPJthOoh6FZLvnFfxU1PANhm9TZO4g7TgoP4B6EDlcQO1z_SfArN8GZKb-_JEZRqR3lWs8HQtaZZTsP8M5kCOzGxyFG01fldEdICbrIht-n1Hb1mUsWMK4AtPXYupTDxKPwUavBxt_zUZ9c483b4D0INDL2I8Hj22gytfdKGOZziEJRcO-TAD0XSVkhFyuriKl0mO6zFUs2ytz1S_E6N3ddEm9s586zcAyTGhJe9d5FjlaqK4Trr2m0yDMMFLbj9mhqzQytY_HdR2u0LutshtZ2v-zPv0bdDYdB7uJObv0-sO0Ygb-v4s-GTGKcHD5G6_5UgXcdGp6ge3rYRBuhYwf2G_gmepSUn3yKvkeo4BQq2EMFJ1DB5wOOUMEBKjiFyjP089P-4d5n4ttrEEk5W5BS5J3QTGrWKapkxTMtSibBQNdUNDTvMslNF7pKZl1TqaYUtO6oynlPqyYTrHiOZsP5oF8gLPvaholYrzUrqIRTgwbVUYqiK4qKsy30IfyrVvra86YFyml7m4S20Ls44sLVXfnLu0X4_a23G5092AKObh21fYcvvEQPVzB_hWaL8Zd-jR7Iy8XRNL7xILoClHeMpQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+matrix-based+dynamic+programming+on+massively+parallel+accelerators&rft.jtitle=Information+systems+%28Oxford%29&rft.au=Bedn%C3%A1rek%2C+David&rft.au=Brabec%2C+Michal&rft.au=Kruli%C5%A1%2C+Martin&rft.date=2017-03-01&rft.issn=0306-4379&rft.volume=64&rft.spage=175&rft.epage=193&rft_id=info:doi/10.1016%2Fj.is.2016.06.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_is_2016_06_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4379&client=summon