An output-polynomial time algorithm to determine all supported efficient solutions for multi-objective integer network flow problems
This paper addresses the problem of enumerating all supported efficient solutions for a linear multi-objective integer minimum cost flow problem (MOIMCF). It derives an output-polynomial time algorithm to determine all supported efficient solutions for MOIMCF problems. This is the first approach to...
Uloženo v:
| Vydáno v: | Discrete Applied Mathematics Ročník 376; s. 1 - 14 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
15.12.2025
|
| Témata: | |
| ISSN: | 0166-218X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper addresses the problem of enumerating all supported efficient solutions for a linear multi-objective integer minimum cost flow problem (MOIMCF). It derives an output-polynomial time algorithm to determine all supported efficient solutions for MOIMCF problems. This is the first approach to solve this general problem in output-polynomial time. Moreover, we prove that the existence of an output-polynomial time algorithm to determine all weakly supported nondominated vectors (or all weakly supported efficient solutions) for a MOIMCF problem with a fixed number of d≥3 objectives can be excluded unless P=NP. |
|---|---|
| ISSN: | 0166-218X |
| DOI: | 10.1016/j.dam.2025.06.001 |