Iterative Pseudo-Sparse Partial Least Square and its Higher-Order variant: Application to inference from high-dimensional biosignals

Partial Least Square (PLS) regression and its (L1 or L2 norm) regularized versions have been proposed to handle the high-dimensionality aspects of the problem at hand and select relevant features. Addressing these issues improves the generalizability of decoding the unseen data, with the severe chal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cognitive and developmental systems Ročník 16; číslo 1; s. 1
Hlavní autoři: Einizade, Aref, Sardouie, Sepideh Hajipour
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2379-8920, 2379-8939
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Partial Least Square (PLS) regression and its (L1 or L2 norm) regularized versions have been proposed to handle the high-dimensionality aspects of the problem at hand and select relevant features. Addressing these issues improves the generalizability of decoding the unseen data, with the severe challenge of high computational complexity. In order to avoid directly solving the L1 norm optimization problem or performing matrix inversion, this paper proposes two PLS-based algorithms, Pseudo-Sparse PLS (PS-PLS) and iterative Pseudo-Sparse Higher-Order PLS (iPS-HOPLS). In these proposed methods, we add the Pseudo-Sparsity term to reduce the L1 norm of the regression coefficient vector in a selective scheme for better importance interpretation while keeping the algorithm as simple as possible. Regarding the evaluation of the proposed methods, we investigate three critical high-dimensionality regression problems of 1) the prediction of 3D trajectory from Electrocorticography (ECoG) recordings, 2) decoding continuous fluctuation of the Electromyography (EMG) powers from recorded Magnetoencephalography (MEG) signals, and 3) continuous decoding of the finger forces from the High-Density surface Electromyogram (HD-sEMG) signals. As well as providing cognitive-relevant interpretations, the experimental results show significant improvements over the generic methods and competitive performance compared to the state-of-the-art regularized PLS approaches.
AbstractList Partial least square (PLS) regression and its (L1 or L2 norm) regularized versions have been proposed to handle the high-dimensionality aspects of the problem at hand and select relevant features. Addressing these issues improves the generalizability of decoding the unseen data, with the severe challenge of high computational complexity. In order to avoid directly solving the L1 norm optimization problem or performing matrix inversion, this article proposes two PLS-based algorithms, pseudo-sparse PLS (PS-PLS) and iterative pseudo-sparse higher order PLS (iPS-HOPLS). In these proposed methods, we add the Pseudo-Sparsity term to reduce the L1 norm of the regression coefficient vector in a selective scheme for better importance interpretation while keeping the algorithm as simple as possible. Regarding the evaluation of the proposed methods, we investigate three critical high-dimensionality regression problems of 1) the prediction of 3-D trajectory from electrocorticography (ECoG) recordings, 2) decoding continuous fluctuation of the electromyography (EMG) powers from recorded magnetoencephalography (MEG) signals, and 3) continuous decoding of the finger forces from the high-density surface electromyogram (HD-sEMG) signals. As well as providing cognitive-relevant interpretations, the experimental results show significant improvements over the generic methods and competitive performance compared to the state-of-the-art regularized PLS approaches.
Partial Least Square (PLS) regression and its (L1 or L2 norm) regularized versions have been proposed to handle the high-dimensionality aspects of the problem at hand and select relevant features. Addressing these issues improves the generalizability of decoding the unseen data, with the severe challenge of high computational complexity. In order to avoid directly solving the L1 norm optimization problem or performing matrix inversion, this paper proposes two PLS-based algorithms, Pseudo-Sparse PLS (PS-PLS) and iterative Pseudo-Sparse Higher-Order PLS (iPS-HOPLS). In these proposed methods, we add the Pseudo-Sparsity term to reduce the L1 norm of the regression coefficient vector in a selective scheme for better importance interpretation while keeping the algorithm as simple as possible. Regarding the evaluation of the proposed methods, we investigate three critical high-dimensionality regression problems of 1) the prediction of 3D trajectory from Electrocorticography (ECoG) recordings, 2) decoding continuous fluctuation of the Electromyography (EMG) powers from recorded Magnetoencephalography (MEG) signals, and 3) continuous decoding of the finger forces from the High-Density surface Electromyogram (HD-sEMG) signals. As well as providing cognitive-relevant interpretations, the experimental results show significant improvements over the generic methods and competitive performance compared to the state-of-the-art regularized PLS approaches.
Author Einizade, Aref
Sardouie, Sepideh Hajipour
Author_xml – sequence: 1
  givenname: Aref
  orcidid: 0000-0002-8546-7261
  surname: Einizade
  fullname: Einizade, Aref
  organization: Electrical Engineering department, Sharif University of Technology, Tehran, Iran
– sequence: 2
  givenname: Sepideh Hajipour
  orcidid: 0000-0003-0594-3019
  surname: Sardouie
  fullname: Sardouie, Sepideh Hajipour
  organization: Electrical Engineering department, Sharif University of Technology, Tehran, Iran
BookMark eNp9kE1rGzEQhkVJIWmaHxDoQdDzuhppvZJ6C27zAYYUnJ4XWZpNFOzVZiQHes8Pj1yHUnroaT54n5eZ9wM7GtOIjJ2DmAEI--Vu8W01k0KqmZKdFiDesROptG2MVfboTy_FMTvL-VEIAZ3SptUn7OWmILkSn5H_yLgLqVlNjnKdHJXoNnyJLhe-eto5Qu7GwGPJ_DrePyA1txSQ-LOj6MbylV9M0yb6apZGXhKP44CEo0c-UNryh8o0IW5xzFVQndcx5Xhfu_yRvR9qwbO3esp-Xn6_W1w3y9urm8XFsvHStqWZg1Bad7p1nQzdINet8WD8HDoLeh60CVL71rdDO-hhLY1yJhhtQbq6huDVKft88J0oPe0wl_4x7Wh_QS-tBNkZBVBV-qDylHImHHofy--vCrm46UH0-9T7fer9PvX-LfVKwj_kRHHr6Nd_mU8HJiLiX3oQUnZWvQLg4JBn
CODEN ITCDA4
CitedBy_id crossref_primary_10_1088_1741_2552_ade917
crossref_primary_10_3390_bios14050221
Cites_doi 10.1088/1741-2560/9/4/045010
10.1038/s41598-017-16579-9
10.1109/ACCESS.2020.3019267
10.1109/TSP.2017.2690524
10.1111/j.2517-6161.1996.tb02080.x
10.1002/sam.11169
10.1109/TBME.2017.2768442
10.1002/cem.1236
10.1088/1741-2552/ac3314
10.1016/j.jneumeth.2016.06.011
10.2307/1267352
10.1371/journal.pone.0154878
10.1016/0003-2670(86)80028-9
10.1016/j.jphysparis.2017.03.002
10.1137/S0895479897326432
10.1111/j.1467-9868.2009.00723.x
10.1016/0169-7439(93)85002-X
10.3389/fneng.2010.00003
10.1016/j.ijforecast.2006.03.001
10.1016/j.jneumeth.2015.03.018
10.1088/1741-2560/11/6/066005
10.1016/j.patcog.2014.12.002
10.1109/IJCNN.2019.8852214
10.1214/009053604000000067
10.1371/journal.pone.0072085
10.1088/1741-2552/aab290
10.1007/s12021-020-09455-x
10.1088/1741-2560/9/3/036015
10.1007/978-0-387-84858-7
10.1016/j.patcog.2017.06.004
10.1007/s10910-015-0570-y
10.1109/TNSRE.2021.3082551
10.1523/JNEUROSCI.4882-10.2011
10.3389/fncom.2020.00022
10.1109/ACCESS.2021.3123098
10.1016/j.neuroimage.2020.116893
10.1109/TPAMI.2012.254
10.1088/1741-2560/9/2/026017
10.1007/978-3-319-53547-0_39
10.1007/978-1-4615-7566-5
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCDS.2023.3267010
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2379-8939
EndPage 1
ExternalDocumentID 10_1109_TCDS_2023_3267010
10102269
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-510377674a62d6f2b48c18c5169175d78d27c4c4f4f7fb283a8d87912a7c41dc3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001167556100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2379-8920
IngestDate Mon Jun 30 10:16:24 EDT 2025
Sat Nov 29 02:22:11 EST 2025
Tue Nov 18 21:36:21 EST 2025
Wed Aug 27 02:14:02 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-510377674a62d6f2b48c18c5169175d78d27c4c4f4f7fb283a8d87912a7c41dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8546-7261
0000-0003-0594-3019
PQID 2921268311
PQPubID 85513
PageCount 1
ParticipantIDs crossref_primary_10_1109_TCDS_2023_3267010
crossref_citationtrail_10_1109_TCDS_2023_3267010
proquest_journals_2921268311
ieee_primary_10102269
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive and developmental systems
PublicationTitleAbbrev TCDS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
Rosipal (ref32) 2001; 2
ref30
ref11
ref33
ref10
Schmidt (ref44) 2005
ref2
ref17
ref39
ref16
ref38
ref19
ref18
Hastie (ref31) 2009; 2
ref24
ref23
Theodoridis (ref1) 2015
ref26
ref25
ref20
ref42
ref41
ref22
Schmidt (ref9) 2009
ref21
ref43
Geladi (ref8) 1986; 185
ref28
ref27
ref29
ref7
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref15
  doi: 10.1088/1741-2560/9/4/045010
– ident: ref26
  doi: 10.1038/s41598-017-16579-9
– volume-title: Machine Learning: A Bayesian and Optimization Perspective
  year: 2015
  ident: ref1
– ident: ref24
  doi: 10.1109/ACCESS.2020.3019267
– ident: ref35
  doi: 10.1109/TSP.2017.2690524
– ident: ref7
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref11
  doi: 10.1002/sam.11169
– ident: ref21
  doi: 10.1109/TBME.2017.2768442
– volume: 2
  start-page: 97
  year: 2001
  ident: ref32
  article-title: Kernel partial least squares regression in reproducing kernel Hilbert space
  publication-title: J. Mach. Learn. Res.
– ident: ref34
  doi: 10.1002/cem.1236
– ident: ref39
  doi: 10.1088/1741-2552/ac3314
– ident: ref42
  doi: 10.1016/j.jneumeth.2016.06.011
– ident: ref6
  doi: 10.2307/1267352
– ident: ref33
  doi: 10.1371/journal.pone.0154878
– volume: 185
  start-page: 1
  year: 1986
  ident: ref8
  article-title: Partial least-squares regression: A tutorial
  publication-title: Analytica Chimica Acta
  doi: 10.1016/0003-2670(86)80028-9
– ident: ref18
  doi: 10.1016/j.jphysparis.2017.03.002
– ident: ref5
  doi: 10.1137/S0895479897326432
– ident: ref12
  doi: 10.1111/j.1467-9868.2009.00723.x
– ident: ref17
  doi: 10.1016/0169-7439(93)85002-X
– ident: ref37
  doi: 10.3389/fneng.2010.00003
– ident: ref38
  doi: 10.1016/j.ijforecast.2006.03.001
– ident: ref28
  doi: 10.1016/j.jneumeth.2015.03.018
– ident: ref36
  doi: 10.1088/1741-2560/11/6/066005
– ident: ref3
  doi: 10.1016/j.patcog.2014.12.002
– ident: ref19
  doi: 10.1109/IJCNN.2019.8852214
– ident: ref43
  doi: 10.1214/009053604000000067
– ident: ref22
  doi: 10.1371/journal.pone.0072085
– ident: ref25
  doi: 10.1088/1741-2552/aab290
– ident: ref41
  doi: 10.1007/s12021-020-09455-x
– ident: ref23
  doi: 10.1088/1741-2560/9/3/036015
– volume: 2
  start-page: 1
  volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  year: 2009
  ident: ref31
  doi: 10.1007/978-0-387-84858-7
– ident: ref4
  doi: 10.1016/j.patcog.2017.06.004
– year: 2009
  ident: ref9
  article-title: Optimization methods for l1-regularization
– ident: ref16
  doi: 10.1007/s10910-015-0570-y
– ident: ref30
  doi: 10.1109/TNSRE.2021.3082551
– ident: ref29
  doi: 10.1523/JNEUROSCI.4882-10.2011
– ident: ref20
  doi: 10.3389/fncom.2020.00022
– ident: ref14
  doi: 10.1109/ACCESS.2021.3123098
– year: 2005
  ident: ref44
  article-title: Least squares optimization with l1-norm regularization
– ident: ref40
  doi: 10.1016/j.neuroimage.2020.116893
– ident: ref10
  doi: 10.1109/TPAMI.2012.254
– ident: ref13
  doi: 10.1088/1741-2560/9/2/026017
– ident: ref27
  doi: 10.1007/978-3-319-53547-0_39
– ident: ref2
  doi: 10.1007/978-1-4615-7566-5
SSID ssj0001637847
Score 2.3119786
Snippet Partial Least Square (PLS) regression and its (L1 or L2 norm) regularized versions have been proposed to handle the high-dimensionality aspects of the problem...
Partial least square (PLS) regression and its (L1 or L2 norm) regularized versions have been proposed to handle the high-dimensionality aspects of the problem...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Feature extraction
Fingers
Iterative algorithms
Iterative methods
iterative Pseudo-Sparse Higher-Order PLS (iPS-HOPLS)
Least squares
Linear regression
Machine Learning
Magnetoencephalography
Optimization
Partial Least Square (PLS)
Prediction algorithms
Pseudo-Sparse PLS (PS-PLS)
Regression
Regression coefficients
Task analysis
Tensors
Title Iterative Pseudo-Sparse Partial Least Square and its Higher-Order variant: Application to inference from high-dimensional biosignals
URI https://ieeexplore.ieee.org/document/10102269
https://www.proquest.com/docview/2921268311
Volume 16
WOSCitedRecordID wos001167556100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2379-8939
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001637847
  issn: 2379-8920
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66ePDiW1xdJQfxIGTtI83D2-IDBVFhFbyVNklhQdvV7Qre_eHOpF0VRMFbW5JQ-CaZmczMN4TsZ7oIC5vlzIDlBg6KCpg2UrLcxiKIcg5KzhcKX8nra_XwoG_bYnVfC-Oc88lnro-PPpZvKzPFqzLY4eifCD1P5qUUTbHW14WKiKXyDcWiWGqmdDSLYoaBPro7OR32sVV4H-wVGWDB7Dc95Bur_DiNvYo5X_7nz62QpdaWpIMG_FUy58o1sj4owY9-eqMH1Gd3-mvzdfJ-6emT4WyjtxM3tRUbjsGnhTeUHVjlCpv40OEziIyjWWnpqJ7QJguE3SA_J30FtxpwOKaDr6A3rSs6mtUMUqxVoUiAzCw2DWgIP2g-qjBLBOR8g9yfn92dXLC2AwMzkeY1Q7o9T_eTiciKArBTJlQGY2tgdlipbCQNN7zghSxysFQyZZXUYZTB59CaeJN0yqp0W4RmPC9EIrlwPOHGJVmowRYskhwM0ERJ1SXBDI_UtPTk2CXjMfVuSqBThDBFCNMWwi45_Jwybrg5_hq8gZh9G9jA1SW9Geppu30naaRBowsVh-H2L9N2yCKszpv87R7p1C9Tt0sWzGs9mrzsecn8AKl14Do
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-2brC-dB9tadpu08PYQ0GpP2RL2lvoVhKWZYVk0DdjSzIEWjttnELf-4f3TnbWQllhb7aRbMPvpLvTffwAvuS6DEubF9yg5YYOigq4NlLywsZpEBUClZwvFB7LyUSdn-uzrljd18I453zymevTpY_l29qs6KgMVzj5J6l-Ca-IOqsr13o4UkljqTylWBRLzZWO1nHMMNDHs5Pv0z6RhffRYpEBlcw-0kSeWuXJfuyVzOnb__y9d7DVWZNs0ML_Hl646gNsDyr0pC9v2Vfm8zv9wfk23I18A2Xc3djZ0q1szacL9GrxjqQH3zImGh82vUKhcSyvLJs3S9bmgfDf1KGT3aBjjUh8Y4OHsDdrajZfVw0yqlZh1AKZW6INaFt-sGJeU54ISvoO_Dn9MTsZ8o6DgZtIi4ZTwz3f8CdPI5uWiJ4yoTIUXUPDw0plI2mEEaUoZVmgrZIrq6QOoxwfh9bEu7BR1ZXbA5aLokwTKVInEmFckocarcEyKdAETZRUPQjWeGSma1BOPBkXmXdUAp0RhBlBmHUQ9uDo75RF253jucE7hNmjgS1cPThco551C3iZRRp1eqriMNz_x7TP8GY4-zXOxqPJzwPYxC-JNpv7EDaa65X7CK_NTTNfXn_yUnoPftbjgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+Pseudo-Sparse+Partial+Least+Square+and+Its+Higher+Order+Variant%3A+Application+to+Inference+From+High-Dimensional+Biosignals&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Einizade%2C+Aref&rft.au=Sardouie%2C+Sepideh+Hajipour&rft.date=2024-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2379-8920&rft.eissn=2379-8939&rft.volume=16&rft.issue=1&rft.spage=296&rft_id=info:doi/10.1109%2FTCDS.2023.3267010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon