An Energy-Efficient Accelerator for Medical Image Reconstruction From Implicit Neural Representation

This work presents an energy-efficient accelerator for medical image reconstruction from implicit neural representation (INR). The accelerator implements an INR-based algorithm to deliver high-quality medical image reconstruction with arbitrary resolution from a compact implicit format. In particula...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems. I, Regular papers Ročník 70; číslo 4; s. 1625 - 1638
Hlavní autoři: Rao, Chaolin, Wu, Qing, Zhou, Pingqiang, Yu, Jingyi, Zhang, Yuyao, Lou, Xin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1549-8328, 1558-0806
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This work presents an energy-efficient accelerator for medical image reconstruction from implicit neural representation (INR). The accelerator implements an INR-based algorithm to deliver high-quality medical image reconstruction with arbitrary resolution from a compact implicit format. In particular, we propose a dedicated hardware architecture based on an optimized computation flow for the INR-based reconstruction algorithm, which co-designs data reuse and computation load. The proposed architecture takes in the coordinate of the intersection of three scans and outputs all the voxel intensities, minimizing the data movement between on-chip and off-chip. To validate the proposed accelerator, we build a proof-of-concept prototype demonstration system using field programmable gate array (FPGA). We also map our design to 40nm CMOS technology to measure the performance of the proposed accelerator. The implementation results show that, running at 400MHz, the proposed accelerator is capable of processing medical images with <inline-formula> <tex-math notation="LaTeX">256\times 256 </tex-math></inline-formula> resolution in real-time at 26.3 frames per second (FPS), with a power consumption of only 795 mW. Comparison results show that the performance, as well as the energy efficiency of the proposed accelerator, outperforms the central processing unit (CPU)-based and graphic processing unit (GPU)-based implementations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2022.3231863