An Energy-Efficient Accelerator for Medical Image Reconstruction From Implicit Neural Representation

This work presents an energy-efficient accelerator for medical image reconstruction from implicit neural representation (INR). The accelerator implements an INR-based algorithm to deliver high-quality medical image reconstruction with arbitrary resolution from a compact implicit format. In particula...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on circuits and systems. I, Regular papers Ročník 70; číslo 4; s. 1625 - 1638
Hlavní autori: Rao, Chaolin, Wu, Qing, Zhou, Pingqiang, Yu, Jingyi, Zhang, Yuyao, Lou, Xin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1549-8328, 1558-0806
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This work presents an energy-efficient accelerator for medical image reconstruction from implicit neural representation (INR). The accelerator implements an INR-based algorithm to deliver high-quality medical image reconstruction with arbitrary resolution from a compact implicit format. In particular, we propose a dedicated hardware architecture based on an optimized computation flow for the INR-based reconstruction algorithm, which co-designs data reuse and computation load. The proposed architecture takes in the coordinate of the intersection of three scans and outputs all the voxel intensities, minimizing the data movement between on-chip and off-chip. To validate the proposed accelerator, we build a proof-of-concept prototype demonstration system using field programmable gate array (FPGA). We also map our design to 40nm CMOS technology to measure the performance of the proposed accelerator. The implementation results show that, running at 400MHz, the proposed accelerator is capable of processing medical images with <inline-formula> <tex-math notation="LaTeX">256\times 256 </tex-math></inline-formula> resolution in real-time at 26.3 frames per second (FPS), with a power consumption of only 795 mW. Comparison results show that the performance, as well as the energy efficiency of the proposed accelerator, outperforms the central processing unit (CPU)-based and graphic processing unit (GPU)-based implementations.
AbstractList This work presents an energy-efficient accelerator for medical image reconstruction from implicit neural representation (INR). The accelerator implements an INR-based algorithm to deliver high-quality medical image reconstruction with arbitrary resolution from a compact implicit format. In particular, we propose a dedicated hardware architecture based on an optimized computation flow for the INR-based reconstruction algorithm, which co-designs data reuse and computation load. The proposed architecture takes in the coordinate of the intersection of three scans and outputs all the voxel intensities, minimizing the data movement between on-chip and off-chip. To validate the proposed accelerator, we build a proof-of-concept prototype demonstration system using field programmable gate array (FPGA). We also map our design to 40nm CMOS technology to measure the performance of the proposed accelerator. The implementation results show that, running at 400MHz, the proposed accelerator is capable of processing medical images with [Formula Omitted] resolution in real-time at 26.3 frames per second (FPS), with a power consumption of only 795 mW. Comparison results show that the performance, as well as the energy efficiency of the proposed accelerator, outperforms the central processing unit (CPU)-based and graphic processing unit (GPU)-based implementations.
This work presents an energy-efficient accelerator for medical image reconstruction from implicit neural representation (INR). The accelerator implements an INR-based algorithm to deliver high-quality medical image reconstruction with arbitrary resolution from a compact implicit format. In particular, we propose a dedicated hardware architecture based on an optimized computation flow for the INR-based reconstruction algorithm, which co-designs data reuse and computation load. The proposed architecture takes in the coordinate of the intersection of three scans and outputs all the voxel intensities, minimizing the data movement between on-chip and off-chip. To validate the proposed accelerator, we build a proof-of-concept prototype demonstration system using field programmable gate array (FPGA). We also map our design to 40nm CMOS technology to measure the performance of the proposed accelerator. The implementation results show that, running at 400MHz, the proposed accelerator is capable of processing medical images with <inline-formula> <tex-math notation="LaTeX">256\times 256 </tex-math></inline-formula> resolution in real-time at 26.3 frames per second (FPS), with a power consumption of only 795 mW. Comparison results show that the performance, as well as the energy efficiency of the proposed accelerator, outperforms the central processing unit (CPU)-based and graphic processing unit (GPU)-based implementations.
Author Zhang, Yuyao
Lou, Xin
Rao, Chaolin
Zhou, Pingqiang
Yu, Jingyi
Wu, Qing
Author_xml – sequence: 1
  givenname: Chaolin
  orcidid: 0000-0003-2172-5361
  surname: Rao
  fullname: Rao, Chaolin
  email: raochl@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
– sequence: 2
  givenname: Qing
  orcidid: 0000-0001-9320-0332
  surname: Wu
  fullname: Wu, Qing
  email: wuqing@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
– sequence: 3
  givenname: Pingqiang
  orcidid: 0000-0001-9515-9302
  surname: Zhou
  fullname: Zhou, Pingqiang
  email: zhoupq@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
– sequence: 4
  givenname: Jingyi
  orcidid: 0000-0001-9198-6853
  surname: Yu
  fullname: Yu, Jingyi
  email: yujingyi@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
– sequence: 5
  givenname: Yuyao
  orcidid: 0000-0001-6706-4867
  surname: Zhang
  fullname: Zhang, Yuyao
  email: zhangyy8@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
– sequence: 6
  givenname: Xin
  orcidid: 0000-0002-8499-5038
  surname: Lou
  fullname: Lou, Xin
  email: louxin@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
BookMark eNp9kE1LAzEQhoNUsK3-AMHDguetk4_9OpbSaqEq1Hpe0mRStmyTNbs99N-btT2IBw9DBuZ5JsM7IgPrLBJyT2FCKRRPm9nHcsKAsQlnnOYpvyJDmiR5DDmkg74XRZxzlt-QUdvuAVgBnA6JntpobtHvTvHcmEpVaLtoqhTW6GXnfGRCvaKulKyj5UHuMFqjcrbt_FF1lbPRwrtDmDR1kLvoDY8-kGtsPLZhl-yZW3JtZN3i3eUdk8_FfDN7iVfvz8vZdBUrVoguTsCAoQU1JktSuRWQCS04Mppp0KiMVlBQqXOjKFKdQJanORWoJM-k3hrBx-TxvLfx7uuIbVfu3dHb8GXJsoIzCLmkgcrOlPKubT2aMhz-c2fnZVWXFMo-0rKPtOwjLS-RBpP-MRtfHaQ__es8nJ0KEX_xAEKE-Tc9B4Uw
CODEN ITCSCH
CitedBy_id crossref_primary_10_1088_1361_6560_ad33b7
crossref_primary_10_1109_TMI_2025_3526452
crossref_primary_10_1109_TMI_2023_3342156
crossref_primary_10_1109_TCSI_2024_3488858
crossref_primary_10_1109_TCSI_2024_3413570
crossref_primary_10_1088_1361_6560_addfa5
crossref_primary_10_1109_TSUSC_2023_3325268
crossref_primary_10_1109_TVLSI_2024_3515113
crossref_primary_10_1145_3727257_3727259
Cites_doi 10.1109/MICRO.2016.7783723
10.1109/TMI.2019.2922960
10.1007/978-3-030-58452-8_24
10.1109/CVPR.2019.00459
10.1109/TIP.2019.2942510
10.1109/TCSVT.2006.876360
10.1109/TCSI.2017.2759803
10.1109/TCSVT.2018.2812781
10.1109/HPCA47549.2020.00030
10.1007/978-3-030-59713-9_14
10.1007/978-3-030-87231-1_7
10.1016/0893-6080(89)90020-8
10.1109/TCSI.2017.2757036
10.1111/cgf.14507
10.1109/TCSI.2022.3188899
10.1145/3474085.3475584
10.1109/TCSI.2020.3030663
10.1109/TVLSI.2017.2688340
10.1109/TMI.2020.3037187
10.1109/CVPR.2016.90
10.1007/978-3-031-19787-1_10
10.1109/AICAS51828.2021.9458511
10.1109/CVPR.2019.00025
10.1109/TCSVT.2011.2129350
10.1007/s003300101100
10.1109/TCSI.2018.2840092
10.1109/CVPR46437.2021.00852
10.1109/VLSIC.2018.8502333
10.1109/ISSCC.2017.7870353
10.1109/JSSC.2016.2616357
10.1109/TVLSI.2021.3135353
10.23919/VLSIT.2019.8776507
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCSI.2022.3231863
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Explore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0806
EndPage 1638
ExternalDocumentID 10_1109_TCSI_2022_3231863
10004486
Genre orig-research
GrantInformation_xml – fundername: Shanghai Rising-Star Program
  grantid: 21QC1401400
– fundername: Central Guided Local Science and Technology Foundation of China
  grantid: YDZX20223100001001
GroupedDBID 0R~
29I
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c294t-50f0f191ff756ab4074d43e217d0decfdc091ad8fc1e1d50786814eca37adbf43
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000910584100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-8328
IngestDate Mon Jun 30 04:22:17 EDT 2025
Tue Nov 18 22:23:58 EST 2025
Sat Nov 29 06:23:57 EST 2025
Wed Aug 27 02:49:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-50f0f191ff756ab4074d43e217d0decfdc091ad8fc1e1d50786814eca37adbf43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6706-4867
0000-0002-8499-5038
0000-0001-9320-0332
0000-0001-9515-9302
0000-0001-9198-6853
0000-0003-2172-5361
PQID 2793208636
PQPubID 85411
PageCount 14
ParticipantIDs crossref_primary_10_1109_TCSI_2022_3231863
ieee_primary_10004486
crossref_citationtrail_10_1109_TCSI_2022_3231863
proquest_journals_2793208636
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. I, Regular papers
PublicationTitleAbbrev TCSI
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
Tancik (ref7); 33
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref10
ref32
ref1
ref17
ref16
ref19
Rahaman (ref30)
ref18
Sitzmann (ref6); 33
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Mustra (ref2); 1
ref28
ref27
ref29
ref8
ref9
Wu (ref33) 2022
ref4
ref3
ref5
References_xml – ident: ref28
  doi: 10.1109/MICRO.2016.7783723
– ident: ref34
  doi: 10.1109/TMI.2019.2922960
– ident: ref5
  doi: 10.1007/978-3-030-58452-8_24
– ident: ref9
  doi: 10.1109/CVPR.2019.00459
– volume: 1
  start-page: 39
  volume-title: Proc. 50th Int. Symp. ELMAR
  ident: ref2
  article-title: Overview of the DICOM standard
– ident: ref37
  doi: 10.1109/TIP.2019.2942510
– start-page: 5301
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref30
  article-title: On the spectral bias of neural networks
– ident: ref3
  doi: 10.1109/TCSVT.2006.876360
– ident: ref22
  doi: 10.1109/TCSI.2017.2759803
– ident: ref23
  doi: 10.1109/TCSVT.2018.2812781
– ident: ref24
  doi: 10.1109/HPCA47549.2020.00030
– ident: ref36
  doi: 10.1007/978-3-030-59713-9_14
– ident: ref15
  doi: 10.1007/978-3-030-87231-1_7
– ident: ref29
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref20
  doi: 10.1109/TCSI.2017.2757036
– ident: ref10
  doi: 10.1111/cgf.14507
– ident: ref13
  doi: 10.1109/TCSI.2022.3188899
– volume: 33
  start-page: 7537
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref7
  article-title: Fourier features let networks learn high frequency functions in low dimensional domains
– ident: ref16
  doi: 10.1145/3474085.3475584
– ident: ref19
  doi: 10.1109/TCSI.2020.3030663
– ident: ref18
  doi: 10.1109/TVLSI.2017.2688340
– ident: ref35
  doi: 10.1109/TMI.2020.3037187
– year: 2022
  ident: ref33
  article-title: Self-supervised coordinate projection network for sparse-view computed tomography
  publication-title: arXiv:2209.05483
– ident: ref32
  doi: 10.1109/CVPR.2016.90
– ident: ref17
  doi: 10.1007/978-3-031-19787-1_10
– ident: ref27
  doi: 10.1109/AICAS51828.2021.9458511
– ident: ref8
  doi: 10.1109/CVPR.2019.00025
– ident: ref4
  doi: 10.1109/TCSVT.2011.2129350
– ident: ref1
  doi: 10.1007/s003300101100
– ident: ref21
  doi: 10.1109/TCSI.2018.2840092
– ident: ref14
  doi: 10.1109/CVPR46437.2021.00852
– ident: ref26
  doi: 10.1109/VLSIC.2018.8502333
– ident: ref11
  doi: 10.1109/ISSCC.2017.7870353
– ident: ref12
  doi: 10.1109/JSSC.2016.2616357
– ident: ref31
  doi: 10.1109/TVLSI.2021.3135353
– volume: 33
  start-page: 7462
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref6
  article-title: Implicit neural representations with periodic activation functions
– ident: ref25
  doi: 10.23919/VLSIT.2019.8776507
SSID ssj0029031
Score 2.4559798
Snippet This work presents an energy-efficient accelerator for medical image reconstruction from implicit neural representation (INR). The accelerator implements an...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1625
SubjectTerms accelerator
Algorithms
Biological neural networks
Central processing units
Computation
Computational modeling
Computer architecture
CPUs
Energy efficiency
energy-efficient
Field programmable gate arrays
Frames per second
Graphics processing units
Image coding
Image quality
Image reconstruction
Image resolution
implicit neural representation (INR)
Medical diagnostic imaging
Medical image reconstruction
Medical imaging
Performance evaluation
Power consumption
Representations
Three-dimensional displays
Title An Energy-Efficient Accelerator for Medical Image Reconstruction From Implicit Neural Representation
URI https://ieeexplore.ieee.org/document/10004486
https://www.proquest.com/docview/2793208636
Volume 70
WOSCitedRecordID wos000910584100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Explore
  customDbUrl:
  eissn: 1558-0806
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029031
  issn: 1549-8328
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62eNCDz4rVKjl4EmJ3N-kmOZbSYkGK-MLbsk0yIOhWavX3O8mmPhAF97SHZFnyZSfz7cx8Q8hJj2sLUmcshYQz4coe0wqA5VBKLkuQELT07i7kZKLu7_VlLFYPtTDOuZB85s78bYjl25l59b_KummIP6q8QRpSyrpY64Nd6YTX4qhCM9ymKoYw00R3bwbXY6SCWXbG0Z1ROf92CIWuKj9McThfRpv_fLMtshEdSdqvkd8mK67aIetf5AV3ie1XdBhq-9gwKEXgM2jfGDxpQnCdosNKY6SGjp_QslDPRj81ZeloPnui45B0_rCgXsgDR16F5NlYs1S1yO1oeDM4Z7GrAjOZFgvWSyABZGkAspeXUyR0wgrukJrYxDoD1qALUVoFJnWpRXdR5SoVzpQInZ2C4HukWc0qt0-okRLwkk5OuRDOlbLUwDPLFYh8KtM2SZbLXJgoOe47XzwWgXokuvDIFB6ZIiLTJqcfU55rvY2_Brc8FF8G1ii0SWcJZhE_yZciQ0uUIYHj-cEv0w7Jmm8mX-fldEgTF9sdkVXztnh4mR-H3fYODzvTQQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED5BQQIeYEDRCmXzw56QvCWxE9uP1dRqFV2FWEF9i1LbJ1WiKdo6fj9nxx1DCCTylAc7ivw55_tyd98BnJTCOFSm4DlmgkvflNxoRF5ho4RqUGHU0vs6U_O5Xi7Np1SsHmthvPcx-cyfhtsYy3dbext-lZ3lMf6oq4fwqJSyyLtyrTt-ZTLRyaNKw2mj6hTEzDNztji_mhIZLIpTQQ6NrsRvx1Dsq_KHMY4nzOTFf77bATxPriQbddi_hAe-fQXP7gkMvgY3atk4VvfxcdSKoGewkbV01sTwOiOXlaVYDZtuyLawwEd_qcqyyfV2w6Yx7Xy9Y0HKg0Z-jumzqWqp7cOXyXhxfsFTXwVuCyN3vMwwQ-JpiKqsmhVROumk8EROXOa8RWfJiWicRpv73JHDqCudS28bAs-tUIo30Gu3rT8EZpVCupRXKyGl941qDIrCCY2yWql8ANl-mWubRMdD74tvdSQfmakDMnVApk7IDODD3ZTvneLGvwb3AxT3BnYoDGC4B7NOH-VNXZAtKojCiertX6Ydw5OLxeWsnk3nH9_B09BavsvSGUKPFt6_h8f2x259c30Ud95PM8DWiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Energy-Efficient+Accelerator+for+Medical+Image+Reconstruction+From+Implicit+Neural+Representation&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Rao%2C+Chaolin&rft.au=Wu%2C+Qing&rft.au=Zhou%2C+Pingqiang&rft.au=Yu%2C+Jingyi&rft.date=2023-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1549-8328&rft.eissn=1558-0806&rft.volume=70&rft.issue=4&rft.spage=1625&rft_id=info:doi/10.1109%2FTCSI.2022.3231863&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon