Sparse Target Batch-processing Framework for Scanning Radar Superresolution Imaging

Sparse superresolution algorithms have been applied in scanning radar imaging to improve its azimuth resolution. However, the inverse matrix in each iteration is usually diagonal loading by the updating result, which leads to huge computational complexity for two-dimensional echo data. In this lette...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters Vol. 20; p. 1
Main Authors: Tuo, Xingyu, Mao, Deqing, Zhang, Yin, Zhang, Yongchao, Huang, Yulin, Yang, Jianyu
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1545-598X, 1558-0571
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sparse superresolution algorithms have been applied in scanning radar imaging to improve its azimuth resolution. However, the inverse matrix in each iteration is usually diagonal loading by the updating result, which leads to huge computational complexity for two-dimensional echo data. In this letter, a batch-processing superresolution framework is proposed to process the echo data in parallel. On the one hand, the optimization problem for sparse target recovery is modified as matrix form, which presents batch-processing potential for two-dimensional echo data. On the other hand, the optimization problem is solved by the proposed alternating direction method of multipliers (ADMM)-based batch-processing framework, which can avoid high-dimensional matrix inversion along different range bins. Compared with traditional sparse superresolution methods, the proposed batch-processing framework is much suitable for two-dimensional echo data superresolution.
AbstractList Sparse superresolution algorithms have been applied in scanning radar imaging to improve its azimuth resolution. However, the inverse matrix in each iteration is usually diagonal loading by the updating result, which leads to huge computational complexity for 2-D echo data. In this letter, a batch-processing superresolution framework is proposed to process the echo data in parallel. On the one hand, the optimization problem for sparse target recovery is modified as matrix form, which presents the batch-processing potential for 2-D echo data. On the other hand, the optimization problem is solved by the proposed alternating direction method of multipliers (ADMM)-based batch-processing framework, which can avoid high-dimensional matrix inversion along different range bins. Compared with traditional sparse superresolution methods, the proposed batch-processing framework is more suitable for 2-D echo data superresolution.
Sparse superresolution algorithms have been applied in scanning radar imaging to improve its azimuth resolution. However, the inverse matrix in each iteration is usually diagonal loading by the updating result, which leads to huge computational complexity for two-dimensional echo data. In this letter, a batch-processing superresolution framework is proposed to process the echo data in parallel. On the one hand, the optimization problem for sparse target recovery is modified as matrix form, which presents batch-processing potential for two-dimensional echo data. On the other hand, the optimization problem is solved by the proposed alternating direction method of multipliers (ADMM)-based batch-processing framework, which can avoid high-dimensional matrix inversion along different range bins. Compared with traditional sparse superresolution methods, the proposed batch-processing framework is much suitable for two-dimensional echo data superresolution.
Author Tuo, Xingyu
Mao, Deqing
Zhang, Yin
Yang, Jianyu
Zhang, Yongchao
Huang, Yulin
Author_xml – sequence: 1
  givenname: Xingyu
  orcidid: 0000-0003-0118-2240
  surname: Tuo
  fullname: Tuo, Xingyu
– sequence: 2
  givenname: Deqing
  orcidid: 0000-0002-7408-1654
  surname: Mao
  fullname: Mao, Deqing
– sequence: 3
  givenname: Yin
  orcidid: 0000-0002-6761-2269
  surname: Zhang
  fullname: Zhang, Yin
– sequence: 4
  givenname: Yongchao
  orcidid: 0000-0001-5634-6156
  surname: Zhang
  fullname: Zhang, Yongchao
– sequence: 5
  givenname: Yulin
  orcidid: 0000-0003-3930-9323
  surname: Huang
  fullname: Huang, Yulin
– sequence: 6
  givenname: Jianyu
  orcidid: 0000-0002-4726-8384
  surname: Yang
  fullname: Yang, Jianyu
BookMark eNp9kE1LAzEQhoNUsK3-AMHDguetSTZpkqMWWwsFoVvBW0jTSd3abtZkl-K_d5f2IB48zdf7zAzvAPVKXwJCtwSPCMHqYTFb5iOKaTbKqGCK4AvUJ5zLFHNBel3OeMqVfL9Cgxh3GFMmpeijPK9MiJCsTNhCnTyZ2n6kVfAWYizKbTIN5gBHHz4T50OSW1OWXXtpNqYtmwpCgOj3TV34MpkfzLadXqNLZ_YRbs5xiN6mz6vJS7p4nc0nj4vUUsXqlAEYucbOCcrHhisQLmMglAVulcRKGotBCOU4cY4SC2JD1No5xqWkjGfZEN2f9rb_fjUQa73zTSjbk5pKIhnmmOBWJU4qG3yMAZy2RW26f-tgir0mWHcO6s5B3Tmozw62JPlDVqE4mPD9L3N3YgoA-KUnlI5Vlv0AsmV_Ew
CODEN IGRSBY
CitedBy_id crossref_primary_10_1088_1361_6501_adc14c
crossref_primary_10_1109_ACCESS_2024_3494792
crossref_primary_10_1109_JSEN_2024_3409886
crossref_primary_10_1109_TGRS_2025_3561856
crossref_primary_10_1088_1361_6501_ad704f
Cites_doi 10.1109/TGRS.2022.3203131
10.1109/LGRS.2012.2185679
10.1137/080724265
10.1109/ACCESS.2020.2965973
10.1109/TIP.2017.2779265
10.1109/IAEAC50856.2021.9390998
10.1109/TAES.2010.5417172
10.1109/IGARSS39084.2020.9324322
10.1109/LGRS.2008.2006285
10.1007/s11042-020-10035-z
10.1109/TAES.2010.5545210
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2023.3274910
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 1
ExternalDocumentID 10_1109_LGRS_2023_3274910
10122693
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2022M720667; BX20220055
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 61901090; 61901092
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
5VS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-4eea8b0ff7256a59e7f34e79ce5c98098ac0e779f51ff21ce7d19bff458824533
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000994564800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Mon Jun 30 10:24:49 EDT 2025
Sat Nov 29 05:54:16 EST 2025
Tue Nov 18 22:45:35 EST 2025
Wed Aug 27 02:18:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-4eea8b0ff7256a59e7f34e79ce5c98098ac0e779f51ff21ce7d19bff458824533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7408-1654
0000-0003-3930-9323
0000-0003-0118-2240
0000-0002-4726-8384
0000-0001-5634-6156
0000-0002-6761-2269
PQID 2818405010
PQPubID 75725
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_LGRS_2023_3274910
ieee_primary_10122693
proquest_journals_2818405010
crossref_primary_10_1109_LGRS_2023_3274910
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref10
ref2
ref1
ref8
ref7
ref9
ref4
ref6
mao (ref3) 2021; 60
ref5
boyd (ref11) 2011
References_xml – ident: ref2
  doi: 10.1109/TGRS.2022.3203131
– ident: ref5
  doi: 10.1109/LGRS.2012.2185679
– ident: ref12
  doi: 10.1137/080724265
– ident: ref9
  doi: 10.1109/ACCESS.2020.2965973
– ident: ref6
  doi: 10.1109/TIP.2017.2779265
– ident: ref7
  doi: 10.1109/IAEAC50856.2021.9390998
– ident: ref10
  doi: 10.1109/TAES.2010.5417172
– ident: ref8
  doi: 10.1109/IGARSS39084.2020.9324322
– volume: 60
  start-page: 1
  year: 2021
  ident: ref3
  article-title: Angular superresolution of real aperture radar using online detect-before-reconstruct framework
  publication-title: IEEE Trans Geosci Remote Sens
– ident: ref4
  doi: 10.1109/LGRS.2008.2006285
– year: 2011
  ident: ref11
  publication-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
– ident: ref13
  doi: 10.1007/s11042-020-10035-z
– ident: ref1
  doi: 10.1109/TAES.2010.5545210
SSID ssj0024887
Score 2.3876638
Snippet Sparse superresolution algorithms have been applied in scanning radar imaging to improve its azimuth resolution. However, the inverse matrix in each iteration...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms ADMM
Algorithms
Azimuth
batch-processing
Convolution
Echoes
Frameworks
Imaging techniques
Iterative methods
Optimization
Radar
Radar imaging
Scanning
scanning radar
Sparse matrices
Sparse superresolution
Superresolution
Title Sparse Target Batch-processing Framework for Scanning Radar Superresolution Imaging
URI https://ieeexplore.ieee.org/document/10122693
https://www.proquest.com/docview/2818405010
Volume 20
WOSCitedRecordID wos000994564800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7cUPTFH3PidEoefBK6tVnbNI8qbgoyZJuwt5KmFyboNvZD2H9vkmY6EAXfWriUki_JfZfk7gO4yhjnOYqWh0JHOmFApZfJSHiR5JKyBDOJvhWbYN1uMhzyZ5esbnNhENFePsOGebRn-flELs1WWdPUoqIxb5WgxFhcJGt9F9ZLrBqeoQRexJOhO8IMfN586vT6DaMT3mjpIIybbNkNJ2RVVX4sxda_tA_--WeHsO-IJLkpkD-CLRxXYNdpmo9WFdjpWNHe1TH0-1MdviIZ2Fvf5FavviNvWmQIaM9F2usLWkQzWNKXhYwR6Ylc6NflFI2Ahxui5PHd6hpV4aV9P7h78JyYgicpDxdeiCiSzFeKaZIjIo5MtUJkXKKGJfF5IqSPjHEVBUrRQCLLA54pZTJZaahJ4QmUx5MxngLRxlEoNDGkcR6i0s1zSrnKZIwyzOKoBv66d1PpKo0bwYu31EYcPk8NIKkBJHWA1OD6q8m0KLPxl3HVILBhWHR-DeprDFM3E-epqXalSakOO89-aXYOe-brxb5KHcqL2RIvYFt-LF7ns0s7yD4BMNHPSA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oVPTFuzivefBJ6GyzdmkeVdwU5xA7YW8lTU-YoFvZRdi_N0kzFUTBtxZOaMmX5HwnyTkfwFnGOM9R1D0UOtIJAyq9TEbCiySXlMWYSfSt2ATrdOJejz-6ZHWbC4OI9vIZ1syjPcvPh3JqtsouTC0q2uD1RVgy0lkuXeurtF5s9fAMKfAiHvfcIWbg84t26ympGaXwWl2HYdzky35zQ1ZX5cdibD1Mc-Of_7YJ645KkssS-y1YwME2rDpV8_5sG1ZaVrZ3tgNJUugAFknX3vsmV3r97XtFmSOgfRdpzq9oEc1hSSJLISPyJHKhX6cFGgkPN0jJ3ZtVNtqF5-ZN9_rWc3IKnqQ8nHghoogzXymmaY6IODJVD5FxiRqY2OexkD4yxlUUKEUDiSwPeKaUyWWloaaFe1AZDAe4D0QbR6HQ1JA28hCVbp5TylUmGyjDrBFVwZ_3bipdrXEjefGa2pjD56kBJDWApA6QKpx_NinKQht_Ge8aBL4Zlp1fhaM5hqmbi-PU1LvStFQHnge_NDuF1dvuQztt33XuD2HNfKncZTmCymQ0xWNYlu-Tl_HoxA64Dyis0pE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Target+Batch-Processing+Framework+for+Scanning+Radar+Superresolution+Imaging&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Tuo%2C+Xingyu&rft.au=Mao%2C+Deqing&rft.au=Zhang%2C+Yin&rft.au=Zhang%2C+Yongchao&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=20&rft.spage=1&rft_id=info:doi/10.1109%2FLGRS.2023.3274910&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon