Payload Transporting With Two Quadrotors by Centralized Reinforcement Learning Method

Nowadays, quadrotors find applications in automation and artificial intelligence. Among diverse quadrotor studies, payload transport stands out, posing implementation challenges. Using multiple quadrotors reduces per-quadrotor load while increasing system complexity. Inspired by model-free reinforce...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on aerospace and electronic systems Ročník 60; číslo 1; s. 239 - 251
Hlavní autoři: Lin, Dasheng, Han, Jianda, Li, Kun, Zhang, Jianlei, Zhang, Chunyan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9251, 1557-9603
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Nowadays, quadrotors find applications in automation and artificial intelligence. Among diverse quadrotor studies, payload transport stands out, posing implementation challenges. Using multiple quadrotors reduces per-quadrotor load while increasing system complexity. Inspired by model-free reinforcement learning, we apply it to position control in a nonlinear two-quadrotor payload system. Our approach employs a reinforcement learning agent guided by the twin delay deep deterministic policy gradient (TD3) algorithm. Its goal is accurate cable-suspended payload delivery and system stabilization. We test the method's robustness by adding noise. Simulation results show that TD3 excels in ideal conditions and handles noise during training and testing, highlighting its effectiveness. This article's scope can be expanded to encompass scenarios involving three or more quadrotors, providing valuable insights for future endeavors.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2023.3321260