Prototype-Guided Autoencoder for OCT-Based Fingerprint Presentation Attack Detection
Anti-spoofing ability is vital for fingerprint identification systems. Conventional fingerprint scanning devices can only obtain information from the fingertip surfaces, and their performance is susceptible to skin conditions and presentation attacks (PAs). However, optical coherence tomography (OCT...
Uloženo v:
| Vydáno v: | IEEE transactions on information forensics and security Ročník 18; s. 1 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1556-6013, 1556-6021 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Anti-spoofing ability is vital for fingerprint identification systems. Conventional fingerprint scanning devices can only obtain information from the fingertip surfaces, and their performance is susceptible to skin conditions and presentation attacks (PAs). However, optical coherence tomography (OCT) can scan subcutaneous tissue and obtain 3D fingerprint structures, naturally enhancing its PA detection (PAD) ability from the perspective of hardware. Existing unsupervised PAD methods are based on image reconstruction. However, the reconstruction error is easily affected by OCT noise and the rich details of OCT images. Therefore we propose feature-based reconstruction to alleviate this problem, called the prototype-guided autoencoder. The model consists of a memory module and a denoising autoencoder without the requirement of PA fingerprints. As only bona fide fingerprints are available during the training phase, the memory module contains the prototype features of the bona fide fingerprints. During the inference phase, as the prototype memory module is frozen, the reconstructed representation of the bona fide input is close to the bona fide fingerprint features. Calculating the distance between the original features and the prototype reconstructed representation of the sample can achieve PAD. To obtain a better decision making boundary, we propose a representation consistency constraint, which reduces the bona fide representation reconstruction distance closer, so that it is easier to differentiate between fingerprints and PAs. |
|---|---|
| AbstractList | Anti-spoofing ability is vital for fingerprint identification systems. Conventional fingerprint scanning devices can only obtain information from the fingertip surfaces, and their performance is susceptible to skin conditions and presentation attacks (PAs). However, optical coherence tomography (OCT) can scan subcutaneous tissue and obtain 3D fingerprint structures, naturally enhancing its PA detection (PAD) ability from the perspective of hardware. Existing unsupervised PAD methods are based on image reconstruction. However, the reconstruction error is easily affected by OCT noise and the rich details of OCT images. Therefore we propose feature-based reconstruction to alleviate this problem, called the prototype-guided autoencoder. The model consists of a memory module and a denoising autoencoder without the requirement of PA fingerprints. As only bona fide fingerprints are available during the training phase, the memory module contains the prototype features of the bona fide fingerprints. During the inference phase, as the prototype memory module is frozen, the reconstructed representation of the bona fide input is close to the bona fide fingerprint features. Calculating the distance between the original features and the prototype reconstructed representation of the sample can achieve PAD. To obtain a better decision making boundary, we propose a representation consistency constraint, which reduces the bona fide representation reconstruction distance closer, so that it is easier to differentiate between fingerprints and PAs. |
| Author | Sun, Haohao Liang, Ronghua Liu, Yi-Peng Zuo, Wangyang Li, Zhanqing |
| Author_xml | – sequence: 1 givenname: Yi-Peng orcidid: 0000-0001-8658-5764 surname: Liu fullname: Liu, Yi-Peng organization: College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China – sequence: 2 givenname: Wangyang surname: Zuo fullname: Zuo, Wangyang organization: College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China – sequence: 3 givenname: Ronghua orcidid: 0000-0003-2077-9608 surname: Liang fullname: Liang, Ronghua organization: College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China – sequence: 4 givenname: Haohao orcidid: 0000-0002-6985-8596 surname: Sun fullname: Sun, Haohao organization: College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China – sequence: 5 givenname: Zhanqing orcidid: 0000-0001-6515-4797 surname: Li fullname: Li, Zhanqing organization: College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China |
| BookMark | eNp9kE1Lw0AQhhepYFv9AYKHgOfU_comOdZqa6HQgvG8bDazklp362Zz6L83IUXEg6cZZt53Pp4JGllnAaFbgmeE4PyhWC9fZxRTNmM0oywTF2hMkkTEAlMy-skJu0KTptljzDkR2RgVO--CC6cjxKu2rqCK5m1wYLWrwEfG-Wi7KOJH1XSdZW3fwR99bUO089CADSrUzkbzEJT-iJ4ggO4L1-jSqEMDN-c4RW_L52LxEm-2q_Vivok1zXmIeW7SlKtEcKY0QC5KkUOmjMrAZCXWqSqJwWXCjSJKVKkiPBGGVTnODOMKsym6H-YevftqoQly71pvu5Wyg5B07xKWdap0UGnvmsaDkboeDg9e1QdJsOwRyh6h7BHKM8LOSf44u-c_lT_967kbPDUA_NITziil7BvvAH9b |
| CODEN | ITIFA6 |
| CitedBy_id | crossref_primary_10_1109_TPAMI_2023_3334760 crossref_primary_10_1016_j_patcog_2023_109981 crossref_primary_10_1109_TIM_2025_3565107 crossref_primary_10_1109_TIFS_2024_3515810 crossref_primary_10_1109_TIFS_2024_3463957 crossref_primary_10_1109_TIFS_2025_3577017 crossref_primary_10_1007_s12596_025_02625_7 crossref_primary_10_1007_s00521_024_10423_8 crossref_primary_10_1109_TIFS_2024_3402387 crossref_primary_10_3390_app15105642 |
| Cites_doi | 10.1145/1390156.1390294 10.1007/978-3-030-16638-0_3 10.1016/j.patcog.2014.05.021 10.1016/j.rinp.2019.102402 10.1109/JSEN.2016.2605125 10.1364/AO.55.003387 10.1109/PRML52754.2021.9520694 10.1016/j.patrec.2012.01.009 10.1109/TIM.2020.2967513 10.1007/978-3-319-92627-8 10.1109/BTAS.2013.6712708 10.1109/CVPR42600.2020.01438 10.1364/BOE.6.004465 10.1109/TIFS.2022.3197058 10.1109/BIOMS.2013.6656148 10.1109/tkde.2021.3139916 10.1109/TIP.2021.3052341 10.1109/ACCESS.2022.3218335 10.1109/MASS56207.2022.00080 10.1364/AO.52.005473 10.1109/BTAS.2018.8698587 10.1109/ICPHM49022.2020.9187054 10.1155/2021/9861533 10.48550/arXiv.1312.6114 10.1126/science.1127647 10.1109/TPAMI.2010.52 10.1145/3123266.3123451 10.1145/3097983.3098052 10.1109/TIP.2017.2671781 10.1049/iet-bmt.2013.0020 10.1007/978-3-319-92627-8_3 10.1364/AO.45.009238 10.1109/ICDM51629.2021.00040 10.1109/SPAC.2017.8304344 10.1145/3457682.3457764 10.1016/j.eswa.2019.03.053 10.1109/ICPR.2010.321 10.1109/ICB45273.2019.8987319 10.1109/ICCV.2019.00179 10.1109/TIFS.2019.2934867 10.1109/tnnls.2021.3132928 10.1109/TIM.2020.2988988 10.1109/CVPR.2016.86 10.1063/1.4922915 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1109/TIFS.2023.3282386 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1556-6021 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TIFS_2023_3282386 10143222 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62076220 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Zhejiang Province grantid: LY22F030018 funderid: 10.13039/501100004731 |
| GroupedDBID | 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS 5VS AAYXX AETIX AGSQL CITATION EJD 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-49f774a5643acee96b69e8afa8ef8b0c7ab1f0b54fa1a6d7a1456f3d908f34a03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001012873200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1556-6013 |
| IngestDate | Mon Jun 30 07:08:27 EDT 2025 Tue Nov 18 22:18:26 EST 2025 Sat Nov 29 02:51:32 EST 2025 Wed Aug 27 02:56:31 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-49f774a5643acee96b69e8afa8ef8b0c7ab1f0b54fa1a6d7a1456f3d908f34a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2077-9608 0000-0002-6985-8596 0000-0001-8658-5764 0000-0001-6515-4797 0000-0001-8887-2409 |
| PQID | 2825601138 |
| PQPubID | 85506 |
| PageCount | 1 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIFS_2023_3282386 proquest_journals_2825601138 crossref_primary_10_1109_TIFS_2023_3282386 ieee_primary_10143222 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on information forensics and security |
| PublicationTitleAbbrev | TIFS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref14 Martins (ref51) ref11 ref10 ref17 ref16 ref19 ref18 Goicoechea-Telleria (ref6) ref50 ref46 ref45 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref3 ref5 Vincent (ref40) 2010; 11 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Chugh (ref4) 2019 Kingma (ref48) 2014 ref24 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 Zong (ref15) Ghiani (ref21) |
| References_xml | – ident: ref39 doi: 10.1145/1390156.1390294 – ident: ref11 doi: 10.1007/978-3-030-16638-0_3 – ident: ref22 doi: 10.1016/j.patcog.2014.05.021 – ident: ref32 doi: 10.1016/j.rinp.2019.102402 – ident: ref29 doi: 10.1109/JSEN.2016.2605125 – ident: ref36 doi: 10.1364/AO.55.003387 – ident: ref13 doi: 10.1109/PRML52754.2021.9520694 – ident: ref20 doi: 10.1016/j.patrec.2012.01.009 – ident: ref47 doi: 10.1109/TIM.2020.2967513 – ident: ref5 doi: 10.1007/978-3-319-92627-8 – ident: ref23 doi: 10.1109/BTAS.2013.6712708 – ident: ref14 doi: 10.1109/CVPR42600.2020.01438 – ident: ref33 doi: 10.1364/BOE.6.004465 – ident: ref25 doi: 10.1109/TIFS.2022.3197058 – ident: ref24 doi: 10.1109/BIOMS.2013.6656148 – ident: ref45 doi: 10.1109/tkde.2021.3139916 – ident: ref12 doi: 10.1109/TIP.2021.3052341 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref15 article-title: Deep autoencoding Gaussian mixture model for unsupervised anomaly detection – ident: ref26 doi: 10.1109/ACCESS.2022.3218335 – ident: ref43 doi: 10.1109/MASS56207.2022.00080 – ident: ref31 doi: 10.1364/AO.52.005473 – year: 2019 ident: ref4 article-title: OCT fingerprints: Resilience to presentation attacks publication-title: arXiv:1908.00102 – ident: ref2 doi: 10.1109/BTAS.2018.8698587 – ident: ref49 doi: 10.1109/ICPHM49022.2020.9187054 – ident: ref44 doi: 10.1155/2021/9861533 – ident: ref50 doi: 10.48550/arXiv.1312.6114 – start-page: 1614 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) ident: ref51 article-title: From softmax to sparsemax: A sparse model of attention and multi-label classification – ident: ref37 doi: 10.1126/science.1127647 – ident: ref1 doi: 10.1109/TPAMI.2010.52 – start-page: 537 volume-title: Proc. 21st Int. Conf. Pattern Recognit. (ICPR) ident: ref21 article-title: Fingerprint liveness detection by local phase quantization – ident: ref17 doi: 10.1145/3123266.3123451 – year: 2014 ident: ref48 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref41 doi: 10.1145/3097983.3098052 – ident: ref3 doi: 10.1109/TIP.2017.2671781 – ident: ref8 doi: 10.1049/iet-bmt.2013.0020 – ident: ref30 doi: 10.1007/978-3-319-92627-8_3 – ident: ref35 doi: 10.1364/AO.45.009238 – ident: ref46 doi: 10.1109/ICDM51629.2021.00040 – ident: ref34 doi: 10.1109/SPAC.2017.8304344 – ident: ref42 doi: 10.1145/3457682.3457764 – ident: ref9 doi: 10.1016/j.eswa.2019.03.053 – ident: ref19 doi: 10.1109/ICPR.2010.321 – ident: ref7 doi: 10.1109/ICB45273.2019.8987319 – ident: ref18 doi: 10.1109/ICCV.2019.00179 – ident: ref27 doi: 10.1109/TIFS.2019.2934867 – ident: ref38 doi: 10.1109/tnnls.2021.3132928 – ident: ref10 doi: 10.1109/TIM.2020.2988988 – ident: ref16 doi: 10.1109/CVPR.2016.86 – volume: 11 start-page: 3371 year: 2010 ident: ref40 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – ident: ref28 doi: 10.1063/1.4922915 – start-page: 1 volume-title: Proc. Int. Biometric Perform. Test. Conf. (BPTC) ident: ref6 article-title: An evaluation of presentation attack detection of fingerprint biometric systems applying ISO/IEC 30107–3 |
| SSID | ssj0044168 |
| Score | 2.404914 |
| Snippet | Anti-spoofing ability is vital for fingerprint identification systems. Conventional fingerprint scanning devices can only obtain information from the fingertip... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | autoencoder Decision making Feature extraction Fingerprint recognition Fingerprints Image reconstruction Medical imaging Memory modules Modules Noise reduction Optical Coherence Tomography Presentation attack detection prototype Prototypes Representations Spoofing Training |
| Title | Prototype-Guided Autoencoder for OCT-Based Fingerprint Presentation Attack Detection |
| URI | https://ieeexplore.ieee.org/document/10143222 https://www.proquest.com/docview/2825601138 |
| Volume | 18 |
| WOSCitedRecordID | wos001012873200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1556-6021 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044168 issn: 1556-6013 databaseCode: RIE dateStart: 20060101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH848aAHv8XplBw8CdlSmzbNcX5MBdGBU3YraT5gKK3MzL_fJO10IAreesgrpb8k7_de8nsP4CRVCSkoJ5jLSLoARUe40NRgcia50kkqTNCtPd-x-_tsPObDRqwetDBa63D5THf9YzjLV5Wc-VRZz_eV9ScDLWgxltZirfm269x6rXtLkhS7KCNujjAjwnuj28Fj1_cJ78Yuwoi9bnrBCYWuKj-24uBfBhv__LJNWG-IJOrXyG_Bki63YWPepAE1a3Yb1hYqDu7AaDitbOXzrvh6NlFaof7MVr6YpXJGjsCih4sRPneuTaFByPj5xJ9Fw2-VUon61gr5gi61Dfe4yl14GlyNLm5w01gByzNOLabcONYnEsdGhHOSPC1SrjNhRKZNVhDJRBEZUiTUiEikionI0SwTK04yE1NB4j1YLqtS7wNiRvqKbAVztIBSToVOhJaMSSVoJg1pA5n_6Vw2Vcd984vXPEQfhOcenNyDkzfgtOH0y-StLrnx1-Bdj8bCwBqINnTmeObNqnzPvU7XTY0ozg5-MTuEVf_2OsfSgWU7nekjWJEfdvI-PQ4T7hNxA9M1 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFD5YFVofqrWWrlWbhz4JWTNO5pLH1boqXbcLTotvQyYXEMtMWbP9_eZksu2CtNC3YUjIMF-Sc0m-8wF8ynXGGi4YFSpRPkAxCW0Mt5SdKqFNlksbeGvfJ8V0Wt7diVkkqwcujDEmXD4zQ3wMZ_m6UwtMlZ2griyeDLyADZTOinSt5cbr3_TMtyzLqY8z0niImTBxUl2Pb4eoFD5MfYyRInN6xQwFXZVnm3GwMOPt__y2HXgdXUky6rF_A2um3YXtpUwDiat2F7ZWag6-hWo271yHmVd6ubjXRpPRwnVYzlL7Tt6FJV_PK3rmjZsm45Dzw9SfI7M_PKWWjJyT6oF8Ni7c5Gr34Nv4ojq_olFagapTwR3lwnq_T2beH5HeTIq8yYUppZWlsWXDVCGbxLIm41YmMteFTLyjZVMtWGlTLln6DtbbrjXvgRRWYU22pvCOAeeCS5NJo4pCaclLZdkA2PJP1yrWHUf5ix91iD-YqBGcGsGpIzgDOP7d5WdfdONfjfcQjZWGPRADOFjiWcd1-VgjU9dPjSQt9__S7SO8vKpuJvXkevrlA7zCkfqMywGsu_nCHMKm-uXuH-dHYfI9AZss1n4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prototype-Guided+Autoencoder+for+OCT-Based+Fingerprint+Presentation+Attack+Detection&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Liu%2C+Yi-Peng&rft.au=Zuo%2C+Wangyang&rft.au=Liang%2C+Ronghua&rft.au=Sun%2C+Haohao&rft.date=2023-01-01&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=18&rft.spage=3461&rft.epage=3475&rft_id=info:doi/10.1109%2FTIFS.2023.3282386&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIFS_2023_3282386 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon |