Prototype-Guided Autoencoder for OCT-Based Fingerprint Presentation Attack Detection

Anti-spoofing ability is vital for fingerprint identification systems. Conventional fingerprint scanning devices can only obtain information from the fingertip surfaces, and their performance is susceptible to skin conditions and presentation attacks (PAs). However, optical coherence tomography (OCT...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information forensics and security Ročník 18; s. 1
Hlavní autoři: Liu, Yi-Peng, Zuo, Wangyang, Liang, Ronghua, Sun, Haohao, Li, Zhanqing
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1556-6013, 1556-6021
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Anti-spoofing ability is vital for fingerprint identification systems. Conventional fingerprint scanning devices can only obtain information from the fingertip surfaces, and their performance is susceptible to skin conditions and presentation attacks (PAs). However, optical coherence tomography (OCT) can scan subcutaneous tissue and obtain 3D fingerprint structures, naturally enhancing its PA detection (PAD) ability from the perspective of hardware. Existing unsupervised PAD methods are based on image reconstruction. However, the reconstruction error is easily affected by OCT noise and the rich details of OCT images. Therefore we propose feature-based reconstruction to alleviate this problem, called the prototype-guided autoencoder. The model consists of a memory module and a denoising autoencoder without the requirement of PA fingerprints. As only bona fide fingerprints are available during the training phase, the memory module contains the prototype features of the bona fide fingerprints. During the inference phase, as the prototype memory module is frozen, the reconstructed representation of the bona fide input is close to the bona fide fingerprint features. Calculating the distance between the original features and the prototype reconstructed representation of the sample can achieve PAD. To obtain a better decision making boundary, we propose a representation consistency constraint, which reduces the bona fide representation reconstruction distance closer, so that it is easier to differentiate between fingerprints and PAs.
AbstractList Anti-spoofing ability is vital for fingerprint identification systems. Conventional fingerprint scanning devices can only obtain information from the fingertip surfaces, and their performance is susceptible to skin conditions and presentation attacks (PAs). However, optical coherence tomography (OCT) can scan subcutaneous tissue and obtain 3D fingerprint structures, naturally enhancing its PA detection (PAD) ability from the perspective of hardware. Existing unsupervised PAD methods are based on image reconstruction. However, the reconstruction error is easily affected by OCT noise and the rich details of OCT images. Therefore we propose feature-based reconstruction to alleviate this problem, called the prototype-guided autoencoder. The model consists of a memory module and a denoising autoencoder without the requirement of PA fingerprints. As only bona fide fingerprints are available during the training phase, the memory module contains the prototype features of the bona fide fingerprints. During the inference phase, as the prototype memory module is frozen, the reconstructed representation of the bona fide input is close to the bona fide fingerprint features. Calculating the distance between the original features and the prototype reconstructed representation of the sample can achieve PAD. To obtain a better decision making boundary, we propose a representation consistency constraint, which reduces the bona fide representation reconstruction distance closer, so that it is easier to differentiate between fingerprints and PAs.
Author Sun, Haohao
Liang, Ronghua
Liu, Yi-Peng
Zuo, Wangyang
Li, Zhanqing
Author_xml – sequence: 1
  givenname: Yi-Peng
  orcidid: 0000-0001-8658-5764
  surname: Liu
  fullname: Liu, Yi-Peng
  organization: College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
– sequence: 2
  givenname: Wangyang
  surname: Zuo
  fullname: Zuo, Wangyang
  organization: College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
– sequence: 3
  givenname: Ronghua
  orcidid: 0000-0003-2077-9608
  surname: Liang
  fullname: Liang, Ronghua
  organization: College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
– sequence: 4
  givenname: Haohao
  orcidid: 0000-0002-6985-8596
  surname: Sun
  fullname: Sun, Haohao
  organization: College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
– sequence: 5
  givenname: Zhanqing
  orcidid: 0000-0001-6515-4797
  surname: Li
  fullname: Li, Zhanqing
  organization: College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
BookMark eNp9kE1Lw0AQhhepYFv9AYKHgOfU_comOdZqa6HQgvG8bDazklp362Zz6L83IUXEg6cZZt53Pp4JGllnAaFbgmeE4PyhWC9fZxRTNmM0oywTF2hMkkTEAlMy-skJu0KTptljzDkR2RgVO--CC6cjxKu2rqCK5m1wYLWrwEfG-Wi7KOJH1XSdZW3fwR99bUO089CADSrUzkbzEJT-iJ4ggO4L1-jSqEMDN-c4RW_L52LxEm-2q_Vivok1zXmIeW7SlKtEcKY0QC5KkUOmjMrAZCXWqSqJwWXCjSJKVKkiPBGGVTnODOMKsym6H-YevftqoQly71pvu5Wyg5B07xKWdap0UGnvmsaDkboeDg9e1QdJsOwRyh6h7BHKM8LOSf44u-c_lT_967kbPDUA_NITziil7BvvAH9b
CODEN ITIFA6
CitedBy_id crossref_primary_10_1109_TPAMI_2023_3334760
crossref_primary_10_1016_j_patcog_2023_109981
crossref_primary_10_1109_TIM_2025_3565107
crossref_primary_10_1109_TIFS_2024_3515810
crossref_primary_10_1109_TIFS_2024_3463957
crossref_primary_10_1109_TIFS_2025_3577017
crossref_primary_10_1007_s12596_025_02625_7
crossref_primary_10_1007_s00521_024_10423_8
crossref_primary_10_1109_TIFS_2024_3402387
crossref_primary_10_3390_app15105642
Cites_doi 10.1145/1390156.1390294
10.1007/978-3-030-16638-0_3
10.1016/j.patcog.2014.05.021
10.1016/j.rinp.2019.102402
10.1109/JSEN.2016.2605125
10.1364/AO.55.003387
10.1109/PRML52754.2021.9520694
10.1016/j.patrec.2012.01.009
10.1109/TIM.2020.2967513
10.1007/978-3-319-92627-8
10.1109/BTAS.2013.6712708
10.1109/CVPR42600.2020.01438
10.1364/BOE.6.004465
10.1109/TIFS.2022.3197058
10.1109/BIOMS.2013.6656148
10.1109/tkde.2021.3139916
10.1109/TIP.2021.3052341
10.1109/ACCESS.2022.3218335
10.1109/MASS56207.2022.00080
10.1364/AO.52.005473
10.1109/BTAS.2018.8698587
10.1109/ICPHM49022.2020.9187054
10.1155/2021/9861533
10.48550/arXiv.1312.6114
10.1126/science.1127647
10.1109/TPAMI.2010.52
10.1145/3123266.3123451
10.1145/3097983.3098052
10.1109/TIP.2017.2671781
10.1049/iet-bmt.2013.0020
10.1007/978-3-319-92627-8_3
10.1364/AO.45.009238
10.1109/ICDM51629.2021.00040
10.1109/SPAC.2017.8304344
10.1145/3457682.3457764
10.1016/j.eswa.2019.03.053
10.1109/ICPR.2010.321
10.1109/ICB45273.2019.8987319
10.1109/ICCV.2019.00179
10.1109/TIFS.2019.2934867
10.1109/tnnls.2021.3132928
10.1109/TIM.2020.2988988
10.1109/CVPR.2016.86
10.1063/1.4922915
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TIFS.2023.3282386
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 1
ExternalDocumentID 10_1109_TIFS_2023_3282386
10143222
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62076220
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LY22F030018
  funderid: 10.13039/501100004731
GroupedDBID 0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
5VS
AAYXX
AETIX
AGSQL
CITATION
EJD
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-49f774a5643acee96b69e8afa8ef8b0c7ab1f0b54fa1a6d7a1456f3d908f34a03
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001012873200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1556-6013
IngestDate Mon Jun 30 07:08:27 EDT 2025
Tue Nov 18 22:18:26 EST 2025
Sat Nov 29 02:51:32 EST 2025
Wed Aug 27 02:56:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-49f774a5643acee96b69e8afa8ef8b0c7ab1f0b54fa1a6d7a1456f3d908f34a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2077-9608
0000-0002-6985-8596
0000-0001-8658-5764
0000-0001-6515-4797
0000-0001-8887-2409
PQID 2825601138
PQPubID 85506
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TIFS_2023_3282386
proquest_journals_2825601138
crossref_primary_10_1109_TIFS_2023_3282386
ieee_primary_10143222
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
Martins (ref51)
ref11
ref10
ref17
ref16
ref19
ref18
Goicoechea-Telleria (ref6)
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref3
ref5
Vincent (ref40) 2010; 11
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Chugh (ref4) 2019
Kingma (ref48) 2014
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
Zong (ref15)
Ghiani (ref21)
References_xml – ident: ref39
  doi: 10.1145/1390156.1390294
– ident: ref11
  doi: 10.1007/978-3-030-16638-0_3
– ident: ref22
  doi: 10.1016/j.patcog.2014.05.021
– ident: ref32
  doi: 10.1016/j.rinp.2019.102402
– ident: ref29
  doi: 10.1109/JSEN.2016.2605125
– ident: ref36
  doi: 10.1364/AO.55.003387
– ident: ref13
  doi: 10.1109/PRML52754.2021.9520694
– ident: ref20
  doi: 10.1016/j.patrec.2012.01.009
– ident: ref47
  doi: 10.1109/TIM.2020.2967513
– ident: ref5
  doi: 10.1007/978-3-319-92627-8
– ident: ref23
  doi: 10.1109/BTAS.2013.6712708
– ident: ref14
  doi: 10.1109/CVPR42600.2020.01438
– ident: ref33
  doi: 10.1364/BOE.6.004465
– ident: ref25
  doi: 10.1109/TIFS.2022.3197058
– ident: ref24
  doi: 10.1109/BIOMS.2013.6656148
– ident: ref45
  doi: 10.1109/tkde.2021.3139916
– ident: ref12
  doi: 10.1109/TIP.2021.3052341
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref15
  article-title: Deep autoencoding Gaussian mixture model for unsupervised anomaly detection
– ident: ref26
  doi: 10.1109/ACCESS.2022.3218335
– ident: ref43
  doi: 10.1109/MASS56207.2022.00080
– ident: ref31
  doi: 10.1364/AO.52.005473
– year: 2019
  ident: ref4
  article-title: OCT fingerprints: Resilience to presentation attacks
  publication-title: arXiv:1908.00102
– ident: ref2
  doi: 10.1109/BTAS.2018.8698587
– ident: ref49
  doi: 10.1109/ICPHM49022.2020.9187054
– ident: ref44
  doi: 10.1155/2021/9861533
– ident: ref50
  doi: 10.48550/arXiv.1312.6114
– start-page: 1614
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref51
  article-title: From softmax to sparsemax: A sparse model of attention and multi-label classification
– ident: ref37
  doi: 10.1126/science.1127647
– ident: ref1
  doi: 10.1109/TPAMI.2010.52
– start-page: 537
  volume-title: Proc. 21st Int. Conf. Pattern Recognit. (ICPR)
  ident: ref21
  article-title: Fingerprint liveness detection by local phase quantization
– ident: ref17
  doi: 10.1145/3123266.3123451
– year: 2014
  ident: ref48
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref41
  doi: 10.1145/3097983.3098052
– ident: ref3
  doi: 10.1109/TIP.2017.2671781
– ident: ref8
  doi: 10.1049/iet-bmt.2013.0020
– ident: ref30
  doi: 10.1007/978-3-319-92627-8_3
– ident: ref35
  doi: 10.1364/AO.45.009238
– ident: ref46
  doi: 10.1109/ICDM51629.2021.00040
– ident: ref34
  doi: 10.1109/SPAC.2017.8304344
– ident: ref42
  doi: 10.1145/3457682.3457764
– ident: ref9
  doi: 10.1016/j.eswa.2019.03.053
– ident: ref19
  doi: 10.1109/ICPR.2010.321
– ident: ref7
  doi: 10.1109/ICB45273.2019.8987319
– ident: ref18
  doi: 10.1109/ICCV.2019.00179
– ident: ref27
  doi: 10.1109/TIFS.2019.2934867
– ident: ref38
  doi: 10.1109/tnnls.2021.3132928
– ident: ref10
  doi: 10.1109/TIM.2020.2988988
– ident: ref16
  doi: 10.1109/CVPR.2016.86
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref40
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: ref28
  doi: 10.1063/1.4922915
– start-page: 1
  volume-title: Proc. Int. Biometric Perform. Test. Conf. (BPTC)
  ident: ref6
  article-title: An evaluation of presentation attack detection of fingerprint biometric systems applying ISO/IEC 30107–3
SSID ssj0044168
Score 2.404914
Snippet Anti-spoofing ability is vital for fingerprint identification systems. Conventional fingerprint scanning devices can only obtain information from the fingertip...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms autoencoder
Decision making
Feature extraction
Fingerprint recognition
Fingerprints
Image reconstruction
Medical imaging
Memory modules
Modules
Noise reduction
Optical Coherence Tomography
Presentation attack detection
prototype
Prototypes
Representations
Spoofing
Training
Title Prototype-Guided Autoencoder for OCT-Based Fingerprint Presentation Attack Detection
URI https://ieeexplore.ieee.org/document/10143222
https://www.proquest.com/docview/2825601138
Volume 18
WOSCitedRecordID wos001012873200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1556-6021
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044168
  issn: 1556-6013
  databaseCode: RIE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH848aAHv8XplBw8CdlSmzbNcX5MBdGBU3YraT5gKK3MzL_fJO10IAreesgrpb8k7_de8nsP4CRVCSkoJ5jLSLoARUe40NRgcia50kkqTNCtPd-x-_tsPObDRqwetDBa63D5THf9YzjLV5Wc-VRZz_eV9ScDLWgxltZirfm269x6rXtLkhS7KCNujjAjwnuj28Fj1_cJ78Yuwoi9bnrBCYWuKj-24uBfBhv__LJNWG-IJOrXyG_Bki63YWPepAE1a3Yb1hYqDu7AaDitbOXzrvh6NlFaof7MVr6YpXJGjsCih4sRPneuTaFByPj5xJ9Fw2-VUon61gr5gi61Dfe4yl14GlyNLm5w01gByzNOLabcONYnEsdGhHOSPC1SrjNhRKZNVhDJRBEZUiTUiEikionI0SwTK04yE1NB4j1YLqtS7wNiRvqKbAVztIBSToVOhJaMSSVoJg1pA5n_6Vw2Vcd984vXPEQfhOcenNyDkzfgtOH0y-StLrnx1-Bdj8bCwBqINnTmeObNqnzPvU7XTY0ozg5-MTuEVf_2OsfSgWU7nekjWJEfdvI-PQ4T7hNxA9M1
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFD5YFVofqrWWrlWbhz4JWTNO5pLH1boqXbcLTotvQyYXEMtMWbP9_eZksu2CtNC3YUjIMF-Sc0m-8wF8ynXGGi4YFSpRPkAxCW0Mt5SdKqFNlksbeGvfJ8V0Wt7diVkkqwcujDEmXD4zQ3wMZ_m6UwtMlZ2griyeDLyADZTOinSt5cbr3_TMtyzLqY8z0niImTBxUl2Pb4eoFD5MfYyRInN6xQwFXZVnm3GwMOPt__y2HXgdXUky6rF_A2um3YXtpUwDiat2F7ZWag6-hWo271yHmVd6ubjXRpPRwnVYzlL7Tt6FJV_PK3rmjZsm45Dzw9SfI7M_PKWWjJyT6oF8Ni7c5Gr34Nv4ojq_olFagapTwR3lwnq_T2beH5HeTIq8yYUppZWlsWXDVCGbxLIm41YmMteFTLyjZVMtWGlTLln6DtbbrjXvgRRWYU22pvCOAeeCS5NJo4pCaclLZdkA2PJP1yrWHUf5ix91iD-YqBGcGsGpIzgDOP7d5WdfdONfjfcQjZWGPRADOFjiWcd1-VgjU9dPjSQt9__S7SO8vKpuJvXkevrlA7zCkfqMywGsu_nCHMKm-uXuH-dHYfI9AZss1n4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prototype-Guided+Autoencoder+for+OCT-Based+Fingerprint+Presentation+Attack+Detection&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Liu%2C+Yi-Peng&rft.au=Zuo%2C+Wangyang&rft.au=Liang%2C+Ronghua&rft.au=Sun%2C+Haohao&rft.date=2023-01-01&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=18&rft.spage=3461&rft.epage=3475&rft_id=info:doi/10.1109%2FTIFS.2023.3282386&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIFS_2023_3282386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon