Deep Subject-Sensitive Hashing Network for High-Resolution Remote Sensing Image Integrity Authentication
For ensuring the integrity of high-resolution remote sensing (HRRS) images, the perceptual hash method offers a dual advantage. It preserves the nondestructive nature of the original image while also ensuring robustness to content-preserving operations. However, current deep learning-based HRRS imag...
Uloženo v:
| Vydáno v: | IEEE geoscience and remote sensing letters Ročník 21; s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1545-598X, 1558-0571 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For ensuring the integrity of high-resolution remote sensing (HRRS) images, the perceptual hash method offers a dual advantage. It preserves the nondestructive nature of the original image while also ensuring robustness to content-preserving operations. However, current deep learning-based HRRS image hashing methods for integrity authentication are notably limited as they terminate at the feature extraction stage and fail to achieve an end-to-end construction from image to hash value. Consequently, there is a looming risk of uncontrollability and unexpected events. To overcome this problem, this letter proposes a deep subject-sensitive hashing network (DSSHN), presenting a unified network for end-to-end feature extraction and hash construction. Improved convolutional block attention module (I-CBAM) helps the network to focus more on subject-sensitive features. A targeted training scheme ensures perceptual hash robustness. The experimental results reveal that the algorithm achieves the best tampering detection performance, with top AUC (0.994) and leading precision and recall rates. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1545-598X 1558-0571 |
| DOI: | 10.1109/LGRS.2024.3407101 |