Traffic Prediction With Missing Data: A Multi-Task Learning Approach

Traffic speed prediction based on real-world traffic data is a classical problem in intelligent transportation systems (ITS). Most existing traffic speed prediction models are proposed based on the hypothesis that traffic data are complete or have rare missing values. However, such data collected in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems Jg. 24; H. 4; S. 1 - 14
Hauptverfasser: Wang, Ao, Ye, Yongchao, Song, Xiaozhuang, Zhang, Shiyao, Yu, James J. Q.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1524-9050, 1558-0016
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Traffic speed prediction based on real-world traffic data is a classical problem in intelligent transportation systems (ITS). Most existing traffic speed prediction models are proposed based on the hypothesis that traffic data are complete or have rare missing values. However, such data collected in real-world scenarios are often incomplete due to various human and natural factors. Although this problem can be solved by first estimating the missing values with an imputation model and then applying a prediction model, the former potentially breaks critical latent features and further leads to the error accumulation issues. To tackle this problem, we propose a graph-based spatio-temporal autoencoder that follows an encoder-decoder structure for spatio-temporal traffic speed prediction with missing values. Specifically, we regard the imputation and prediction as two parallel tasks and train them sequentially to eliminate the negative impact of imputation on raw data for prediction and accelerate the model training process. Furthermore, we utilize graph convolutional layers with a self-adaptive adjacency matrix for spatial dependencies modeling and apply gated recurrent units for temporal learning. To evaluate the proposed model, we conduct comprehensive case studies on two real-world traffic datasets with two different missing patterns and a wide and practical missing rate range from 20% to 80%. Experimental results demonstrate that the model consistently outperforms the state-of-the-art traffic prediction with missing values methods and achieves steady performance in the investigated missing scenarios and prediction horizons.
AbstractList Traffic speed prediction based on real-world traffic data is a classical problem in intelligent transportation systems (ITS). Most existing traffic speed prediction models are proposed based on the hypothesis that traffic data are complete or have rare missing values. However, such data collected in real-world scenarios are often incomplete due to various human and natural factors. Although this problem can be solved by first estimating the missing values with an imputation model and then applying a prediction model, the former potentially breaks critical latent features and further leads to the error accumulation issues. To tackle this problem, we propose a graph-based spatio-temporal autoencoder that follows an encoder-decoder structure for spatio-temporal traffic speed prediction with missing values. Specifically, we regard the imputation and prediction as two parallel tasks and train them sequentially to eliminate the negative impact of imputation on raw data for prediction and accelerate the model training process. Furthermore, we utilize graph convolutional layers with a self-adaptive adjacency matrix for spatial dependencies modeling and apply gated recurrent units for temporal learning. To evaluate the proposed model, we conduct comprehensive case studies on two real-world traffic datasets with two different missing patterns and a wide and practical missing rate range from 20% to 80%. Experimental results demonstrate that the model consistently outperforms the state-of-the-art traffic prediction with missing values methods and achieves steady performance in the investigated missing scenarios and prediction horizons.
Author Zhang, Shiyao
Wang, Ao
Yu, James J. Q.
Song, Xiaozhuang
Ye, Yongchao
Author_xml – sequence: 1
  givenname: Ao
  surname: Wang
  fullname: Wang, Ao
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 2
  givenname: Yongchao
  orcidid: 0000-0001-9782-218X
  surname: Ye
  fullname: Ye, Yongchao
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 3
  givenname: Xiaozhuang
  orcidid: 0000-0002-7861-8957
  surname: Song
  fullname: Song, Xiaozhuang
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 4
  givenname: Shiyao
  orcidid: 0000-0002-0004-1801
  surname: Zhang
  fullname: Zhang, Shiyao
  organization: Research Institute for Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
– sequence: 5
  givenname: James J. Q.
  orcidid: 0000-0002-6392-6711
  surname: Yu
  fullname: Yu, James J. Q.
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
BookMark eNp9kE1PAjEQhhuDiYD-ABMPTTwvttPudtcbAT9IIJq4xmNTSitF3MW2HPz3dgMH48HTfL3PTOYdoF7TNgahS0pGlJLqpp7VLyMgACMGjJUVOUF9mudlRggtel0OPKtITs7QIIRN6vKc0j6a1l5Z6zR-9mbldHRtg99cXOOFC8E173iqorrFY7zYb6PLahU-8Nwo33Sz8W7nW6XX5-jUqm0wF8c4RK_3d_XkMZs_Pcwm43mmoeIx42CXlulSc11SznVhgJhSWFFwWgi2FEwvV9YKZhUIMJabVKaxLRNlKsOG6PqwN5392psQ5abd-yadlCAqoAyAFUklDirt2xC8sVK7qLrPolduKymRnWWys0x2lsmjZYmkf8idd5_Kf__LXB0YZ4z5pScUCCPsB6QZeM4
CODEN ITISFG
CitedBy_id crossref_primary_10_1016_j_ecoinf_2025_103283
crossref_primary_10_1016_j_inffus_2023_102078
crossref_primary_10_3390_fi16060193
crossref_primary_10_1007_s41060_024_00604_y
crossref_primary_10_1007_s10489_024_05314_3
crossref_primary_10_1049_itr2_70069
crossref_primary_10_1145_3743141
crossref_primary_10_1007_s11831_025_10336_2
crossref_primary_10_1631_FITEE_2300873
crossref_primary_10_1109_JIOT_2024_3524030
crossref_primary_10_1109_JIOT_2024_3476498
crossref_primary_10_3390_app14198847
crossref_primary_10_3390_ijgi14080286
crossref_primary_10_1016_j_chaos_2024_115437
crossref_primary_10_1016_j_chaos_2024_114965
crossref_primary_10_1016_j_neucom_2024_128441
crossref_primary_10_1109_TITS_2025_3564578
crossref_primary_10_1007_s10489_024_05291_7
crossref_primary_10_1109_TITS_2024_3478816
crossref_primary_10_1007_s40747_024_01768_7
crossref_primary_10_1016_j_neunet_2025_107963
crossref_primary_10_1016_j_trc_2025_105152
crossref_primary_10_1016_j_ins_2023_119972
crossref_primary_10_1007_s42421_024_00104_2
crossref_primary_10_1016_j_patcog_2025_112046
crossref_primary_10_1109_TII_2024_3396347
crossref_primary_10_1016_j_inffus_2025_103677
crossref_primary_10_1016_j_optlastec_2025_113647
crossref_primary_10_1109_TITS_2024_3447549
crossref_primary_10_1109_TMC_2025_3573373
crossref_primary_10_1038_s41598_025_02933_9
crossref_primary_10_1007_s10115_025_02505_3
crossref_primary_10_1007_s42421_025_00124_6
crossref_primary_10_1038_s41598_023_41902_y
crossref_primary_10_1007_s10489_024_05970_5
crossref_primary_10_1109_ACCESS_2025_3574982
crossref_primary_10_1016_j_aap_2024_107830
crossref_primary_10_1371_journal_pone_0320567
crossref_primary_10_1016_j_asoc_2025_113656
crossref_primary_10_1287_trsc_2023_0326
crossref_primary_10_1080_15472450_2025_2526382
crossref_primary_10_1080_21680566_2025_2497941
crossref_primary_10_1016_j_knosys_2024_112578
crossref_primary_10_1016_j_neunet_2025_107298
crossref_primary_10_3390_technologies13070287
Cites_doi 10.1109/TITS.2020.3030546
10.24963/ijcai.2019/264
10.24963/ijcai.2019/429
10.48550/arXiv.1606.09375
10.1007/978-3-030-86362-3_20
10.1145/2996913.2997016
10.1109/ICDCS51616.2021.00073
10.24963/ijcai.2018/505
10.1145/1390156.1390294
10.1162/neco.1997.9.8.1735
10.1109/TITS.2019.2910560
10.1049/iet-its.2018.5114
10.3141/1678-22
10.1109/TPAMI.2021.3066551
10.1609/aaai.v35i10.17114
10.1145/3447548.3467401
10.1016/j.trc.2021.103372
10.1109/ACCESS.2019.2953888
10.1609/aaai.v33i01.3301922
10.1016/j.trc.2020.102671
10.1109/ACCESS.2019.2923663
10.1016/j.trc.2020.102870
10.1016/j.trc.2018.11.003
10.1109/ACCESS.2020.2999662
10.1016/j.trc.2014.02.006
10.1016/j.trc.2020.102674
10.1109/TITS.2019.2929020
10.1109/TITS.2018.2854968
10.1038/323533a0
10.1109/TNNLS.2020.2978386
10.1109/tits.2021.3069234
10.1016/j.trc.2012.12.007
10.1109/TITS.2004.837813
10.1609/aaai.v35i5.16575
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2022.3233890
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 14
ExternalDocumentID 10_1109_TITS_2022_3233890
10012030
Genre orig-research
GrantInformation_xml – fundername: Stable Support Plan Program of Shenzhen Natural Science Fund
  grantid: 20200925155105002
– fundername: General Program of Guangdong Basic and Applied Basic Research Foundation
  grantid: 2019A1515011032
– fundername: Guangdong Provincial Key Laboratory
  grantid: 2020B121201001
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
H~9
ZY4
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-42fbf3c8c4c8144c6e20e87f7641673b73cbdff73fa272ef4ebdf7f7f8f3ce9e3
IEDL.DBID RIE
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000989285000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sun Nov 09 06:08:06 EST 2025
Tue Nov 18 22:11:51 EST 2025
Sat Nov 29 06:35:02 EST 2025
Wed Aug 27 02:21:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-42fbf3c8c4c8144c6e20e87f7641673b73cbdff73fa272ef4ebdf7f7f8f3ce9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9782-218X
0000-0002-6392-6711
0000-0002-7861-8957
0000-0002-0004-1801
0000-0002-8913-0885
PQID 2792132236
PQPubID 75735
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TITS_2022_3233890
crossref_primary_10_1109_TITS_2022_3233890
ieee_primary_10012030
proquest_journals_2792132236
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref14
ref52
Yoon (ref30)
Luong (ref39)
ref17
Bai (ref27); 33
ref16
ref19
ref18
Wu (ref48); 97
ref50
Bruna (ref26) 2014
ref46
Ruder (ref25) 2017
Chung (ref13) 2014
ref47
ref42
ref44
ref43
Zhu (ref15) 2021
Jiang (ref10) 2021
ref49
ref8
ref7
ref4
ref3
Li (ref9)
ref6
Zaremba (ref11) 2014
ref5
ref40
Sutskever (ref41); 27
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
Chen (ref23) 2019; 98
Sener (ref38)
Cao (ref29); 31
ref24
Che (ref21) 2016
ref20
ref22
Kingma (ref51) 2014
Kipf (ref45)
Zheng (ref28)
References_xml – ident: ref14
  doi: 10.1109/TITS.2020.3030546
– ident: ref47
  doi: 10.24963/ijcai.2019/264
– ident: ref31
  doi: 10.24963/ijcai.2019/429
– volume: 33
  start-page: 17804
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref27
  article-title: Adaptive graph convolutional recurrent network for traffic forecasting
– year: 2014
  ident: ref11
  article-title: Recurrent neural network regularization
  publication-title: arXiv:1409.2329
– start-page: 525
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  ident: ref38
  article-title: Multi-task learning as multi-objective optimization
– ident: ref46
  doi: 10.48550/arXiv.1606.09375
– ident: ref36
  doi: 10.1007/978-3-030-86362-3_20
– ident: ref6
  doi: 10.1145/2996913.2997016
– ident: ref17
  doi: 10.1109/ICDCS51616.2021.00073
– ident: ref40
  doi: 10.24963/ijcai.2018/505
– ident: ref43
  doi: 10.1145/1390156.1390294
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref9
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
– volume: 97
  start-page: 6861
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref48
  article-title: Simplifying graph convolutional networks
– year: 2021
  ident: ref15
  article-title: Networked time series prediction with incomplete data
  publication-title: arXiv:2110.02271
– ident: ref12
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref8
  doi: 10.1109/TITS.2019.2910560
– ident: ref35
  doi: 10.1049/iet-its.2018.5114
– ident: ref2
  doi: 10.3141/1678-22
– ident: ref22
  doi: 10.1109/TPAMI.2021.3066551
– ident: ref52
  doi: 10.1609/aaai.v35i10.17114
– year: 2021
  ident: ref10
  article-title: Graph neural network for traffic forecasting: A survey
  publication-title: arXiv:2101.11174
– ident: ref42
  doi: 10.1145/3447548.3467401
– ident: ref16
  doi: 10.1016/j.trc.2021.103372
– year: 2016
  ident: ref21
  article-title: Recurrent neural networks for multivariate time series with missing values
  publication-title: arXiv:1606.01865
– ident: ref7
  doi: 10.1109/ACCESS.2019.2953888
– ident: ref18
  doi: 10.1609/aaai.v33i01.3301922
– ident: ref19
  doi: 10.1016/j.trc.2020.102671
– ident: ref4
  doi: 10.1109/ACCESS.2019.2923663
– ident: ref33
  doi: 10.1016/j.trc.2020.102870
– volume: 98
  start-page: 73
  year: 2019
  ident: ref23
  article-title: A Bayesian tensor decomposition approach for spatiotemporal traffic data imputation
  publication-title: Transp. Res. C, Emerg. Technol.
  doi: 10.1016/j.trc.2018.11.003
– start-page: 5675
  volume-title: Proc. 35th Int. Conf. Mach. Learn. (ICML)
  ident: ref30
  article-title: GAIN: Missing data imputation using generative adversarial nets
– ident: ref34
  doi: 10.1109/ACCESS.2020.2999662
– start-page: 1
  volume-title: Proc. 5th Int. Conf. Learn. Represent. (ICLR)
  ident: ref45
  article-title: Semi-supervised classification with graph convolutional networks
– year: 2017
  ident: ref25
  article-title: An overview of multi-task learning in deep neural networks
  publication-title: arXiv:1706.05098
– year: 2014
  ident: ref13
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
  publication-title: arXiv:1412.3555
– start-page: 1
  volume-title: Proc. 4th Int. Conf. Learn. Represent. (ICLR)
  ident: ref39
  article-title: Multi-task sequence to sequence learning
– ident: ref3
  doi: 10.1016/j.trc.2014.02.006
– year: 2014
  ident: ref26
  article-title: Spectral networks and locally connected networks on graphs
  publication-title: arXiv:1312.6203
– ident: ref24
  doi: 10.1016/j.trc.2020.102674
– volume: 27
  start-page: 3104
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref41
  article-title: Sequence to sequence learning with neural networks
– ident: ref1
  doi: 10.1109/TITS.2019.2929020
– start-page: 1234
  volume-title: Proc. 34th AAAI Conf. Artif. Intell., (AAAI)
  ident: ref28
  article-title: GMAN: A graph multi-attention network for traffic prediction
– ident: ref32
  doi: 10.1109/TITS.2018.2854968
– ident: ref44
  doi: 10.1038/323533a0
– ident: ref49
  doi: 10.1109/TNNLS.2020.2978386
– ident: ref50
  doi: 10.1109/tits.2021.3069234
– year: 2014
  ident: ref51
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– volume: 31
  start-page: 6776
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref29
  article-title: BRITS: Bidirectional recurrent imputation for time series
– ident: ref20
  doi: 10.1016/j.trc.2012.12.007
– ident: ref5
  doi: 10.1109/TITS.2004.837813
– ident: ref37
  doi: 10.1609/aaai.v35i5.16575
SSID ssj0014511
Score 2.5992107
Snippet Traffic speed prediction based on real-world traffic data is a classical problem in intelligent transportation systems (ITS). Most existing traffic speed...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Coders
Data mining
Deep learning
Encoders-Decoders
Feature extraction
Intelligent transportation systems
Learning
Missing data
multi-task learning
Multitasking
Prediction models
Predictive models
Spatial dependencies
spatio-temporal modeling
Task analysis
Traffic information
Traffic models
Traffic speed
Traffic speed prediction
Training
Title Traffic Prediction With Missing Data: A Multi-Task Learning Approach
URI https://ieeexplore.ieee.org/document/10012030
https://www.proquest.com/docview/2792132236
Volume 24
WOSCitedRecordID wos000989285000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46POjBnxOnU3LwJHTLkq5pvQ116MExsOJuJU1fdCibbJ1_v3lpNgai4K3QBMr38uvry_c9Qi5zloeKMRWwAiU53MZCQV4EIjKaK1R2xsYVm5CDQTwaJUMvVndaGABwl8-ghY8ul19M9QJ_lbU7TuopLEPflDKqxFqrlAEabTlzVB4GCesuU5gdlrTTh_TJUkHOW4JbSobr79om5Kqq_FiK3f7S3_vnl-2TXX-QpL0q8gdkAyaHZGfNXvCI3NqNCB0i6HCG6RgMAX0Zl2_00aJtW9BbVapr2qNOhRukav5Ovd_qK-15s_E6ee7fpTf3ga-aEGiehKXF2-RG6FiHOrZsSUfAGcTSyMievaTIpdB5YYwURnHJwYQ2NMa-NrHtBQmIY1KbTCdwQijjRYcVmoHomlCAtnObmTgEEFGeWCrUIGwJY6a9pThWtvjIHLVgSYbIZ4h85pFvkKtVl8_KT-OvxnWEeq1hhXKDNJfByvyUm2fohIjUWkSnv3Q7I9tYLL66d9MktXK2gHOypb_K8Xx24UbTN7u_xc0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA0yBfXBb3E6NQ8-Cd2yJOuHb8M5NtzGwIp7C216o0PZZOv8_SZpNgai4FuhCZRz83V6c85F6CYlKU8ISTySGUkO1bFIIM085itJE6PsDJUtNhEMBuFoFA2dWN1qYQDAXj6Dqnm0ufxsKhfmV1mtbqWeTDP0zQbnlBRyrVXSwFhtWXtUyr2INJZJzDqJanE3ftJkkNIqo5qUmRV4bRuydVV-LMZ2h2nv__PbDtCeO0riZhH7Q7QBkyO0u2YweIxaeisyHhF4ODMJGRME_DLO33Bf461b4FaSJ3e4ia0O14uT-Tt2jquvuOnsxk_Qc_shvu94rm6CJ2nEc424ShWToeQy1HxJ-kAJhIEKfH36ClgaMJlmSgVMJTSgoLgOjtKvVah7QQTsFJUm0wmcIUxoVieZJMAaijOQenYTFXIA5qeRJkNlRJYwCulMxU1tiw9hyQWJhEFeGOSFQ76MblddPgtHjb8anxio1xoWKJdRZRks4SbdXBgvREOumX_-S7drtN2J-z3R6w4eL9COKR1f3MKpoFI-W8Al2pJf-Xg-u7Ij6xsy-MkU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+Prediction+With+Missing+Data%3A+A+Multi-Task+Learning+Approach&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Wang%2C+Ao&rft.au=Ye%2C+Yongchao&rft.au=Song%2C+Xiaozhuang&rft.au=Zhang%2C+Shiyao&rft.date=2023-04-01&rft.pub=IEEE&rft.issn=1524-9050&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTITS.2022.3233890&rft.externalDocID=10012030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon