Recognition and Localization of FBG Temperature Sensing Based on Combined CDAE and 1-DCNN
In quasi-distributed fiber Bragg grating (FBG) temperature sensor networks, noise and spectral distortions affect the demodulation accuracy of the fiber gratings. To address this issue, we construct a sensor network using spectral encoding and propose a novel approach that combines convolutional den...
Gespeichert in:
| Veröffentlicht in: | IEEE sensors journal Jg. 24; H. 7; S. 10125 - 10137 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In quasi-distributed fiber Bragg grating (FBG) temperature sensor networks, noise and spectral distortions affect the demodulation accuracy of the fiber gratings. To address this issue, we construct a sensor network using spectral encoding and propose a novel approach that combines convolutional denoising autoencoder (CDAE) and 1-D convolutional neural network (1-DCNN), where CDAE is used for denoising FBG reflection spectra and 1-DCNN is employed for temperature state recognition and temperature demodulation of FBG sensors. The proposed method applies to FBG reflection spectra with different input SNR levels ranging from 0 to 20 dB. Experimental results demonstrate that this CDAE is effective in high-fidelity denoising of the original spectral signals and it outperforms other machine learning techniques. The 1-DCNN model achieves a recognition accuracy of 98.2% for FBG temperature states, with a goodness-of-fit value of 0.9994 for the relationship curve between predicted and actual temperatures, and a root-mean-square error (RMSE) of only 0.3049 °C. This research provides an efficient solution for FBG-based sensor networks. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1530-437X 1558-1748 |
| DOI: | 10.1109/JSEN.2024.3365995 |