Recognition and Localization of FBG Temperature Sensing Based on Combined CDAE and 1-DCNN

In quasi-distributed fiber Bragg grating (FBG) temperature sensor networks, noise and spectral distortions affect the demodulation accuracy of the fiber gratings. To address this issue, we construct a sensor network using spectral encoding and propose a novel approach that combines convolutional den...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE sensors journal Ročník 24; číslo 7; s. 10125 - 10137
Hlavní autori: Jiang, Hong, Tang, Rui, Wang, Chenyang, Zhao, Yihan, Li, Hao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1530-437X, 1558-1748
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In quasi-distributed fiber Bragg grating (FBG) temperature sensor networks, noise and spectral distortions affect the demodulation accuracy of the fiber gratings. To address this issue, we construct a sensor network using spectral encoding and propose a novel approach that combines convolutional denoising autoencoder (CDAE) and 1-D convolutional neural network (1-DCNN), where CDAE is used for denoising FBG reflection spectra and 1-DCNN is employed for temperature state recognition and temperature demodulation of FBG sensors. The proposed method applies to FBG reflection spectra with different input SNR levels ranging from 0 to 20 dB. Experimental results demonstrate that this CDAE is effective in high-fidelity denoising of the original spectral signals and it outperforms other machine learning techniques. The 1-DCNN model achieves a recognition accuracy of 98.2% for FBG temperature states, with a goodness-of-fit value of 0.9994 for the relationship curve between predicted and actual temperatures, and a root-mean-square error (RMSE) of only 0.3049 °C. This research provides an efficient solution for FBG-based sensor networks.
AbstractList In quasi-distributed fiber Bragg grating (FBG) temperature sensor networks, noise and spectral distortions affect the demodulation accuracy of the fiber gratings. To address this issue, we construct a sensor network using spectral encoding and propose a novel approach that combines convolutional denoising autoencoder (CDAE) and 1-D convolutional neural network (1-DCNN), where CDAE is used for denoising FBG reflection spectra and 1-DCNN is employed for temperature state recognition and temperature demodulation of FBG sensors. The proposed method applies to FBG reflection spectra with different input SNR levels ranging from 0 to 20 dB. Experimental results demonstrate that this CDAE is effective in high-fidelity denoising of the original spectral signals and it outperforms other machine learning techniques. The 1-DCNN model achieves a recognition accuracy of 98.2% for FBG temperature states, with a goodness-of-fit value of 0.9994 for the relationship curve between predicted and actual temperatures, and a root-mean-square error (RMSE) of only 0.3049 °C. This research provides an efficient solution for FBG-based sensor networks.
Author Jiang, Hong
Wang, Chenyang
Tang, Rui
Zhao, Yihan
Li, Hao
Author_xml – sequence: 1
  givenname: Hong
  orcidid: 0000-0002-1915-2931
  surname: Jiang
  fullname: Jiang, Hong
  email: jianghong@ccut.edu.cn
  organization: School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, China
– sequence: 2
  givenname: Rui
  surname: Tang
  fullname: Tang, Rui
  email: tangrui0907@163.com
  organization: School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, China
– sequence: 3
  givenname: Chenyang
  surname: Wang
  fullname: Wang, Chenyang
  email: 2202104012@stu.ccut.edu.cn
  organization: School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, China
– sequence: 4
  givenname: Yihan
  surname: Zhao
  fullname: Zhao, Yihan
  email: 2202004021@stu.ccut.edu.cn
  organization: School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, China
– sequence: 5
  givenname: Hao
  surname: Li
  fullname: Li, Hao
  email: ccutlihao@163.com
  organization: School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, China
BookMark eNp9kM1OwzAQhC1UJNrCAyBxiMQ5xY7tOD626Q-gqki0SHCynGRTuWrt4qQHeHqStgfEgdOOVt_MaqeHOtZZQOiW4AEhWD48LyeLQYQjNqA05lLyC9QlnCchESzptJrikFHxfoV6VbXBmEjBRRd9vELu1tbUxtlA2yKYu1xvzbc-LlwZTEezYAW7PXhdHzwES7CVsetgpCsogoZJ3S4zttHpeDg5RpBwnC4W1-iy1NsKbs6zj96mk1X6GM5fZk_pcB7mkWR1SEsgWZTEQuuswCxOmBRxRngpBfBM5CAx01FEtI6oZlAAMGBZVpaUxZATTPvo_pS79-7zAFWtNu7gbXNSUUwJlRJL3lDiROXeVZWHUuWmPj5Ze222imDV9qjaHlXbozr32DjJH-fem532X_967k4eAwC_eMYoZYL-AEUBfv8
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_TIM_2025_3558789
crossref_primary_10_1061_JPSEA2_PSENG_1902
crossref_primary_10_1016_j_measurement_2024_115918
crossref_primary_10_3390_electronics13204127
crossref_primary_10_1109_JSEN_2025_3543132
Cites_doi 10.1016/j.yofte.2022.103136
10.1364/oe.447670
10.1007/s13320-021-0615-8
10.3390/s22134951
10.1109/50.618322
10.1117/12.700807
10.1117/12.2195016
10.1364/oe.489964
10.1364/oe.479689
10.1109/cvpr.2016.90
10.3390/s110403466
10.2478/cee-2023-0037
10.1109/jsen.2016.2516038
10.1117/1.oe.58.7.072007
10.1016/j.ifacol.2022.09.200
10.1364/ao.46.002205
10.1088/1742-6596/2293/1/012006
10.3390/s17102368
10.1016/s0030-3992(99)00071-7
10.1109/jlt.2020.2971240
10.1088/1361-6501/aa637f
10.1109/jlt.2016.2593260
10.1364/oe.413443
10.1109/tbme.2015.2468589
10.1016/s0030-4018(02)01907-7
10.3390/ma14051207
10.1109/jlt.2018.2879119
10.1109/jlt.2022.3155253
10.1109/jsen.2023.3238028
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3365995
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 10137
ExternalDocumentID 10_1109_JSEN_2024_3365995
10443347
Genre orig-research
GrantInformation_xml – fundername: Jilin Province Development and Reform Commission
  grantid: 2022C045-1
  funderid: 10.13039/100015800
– fundername: Jilin Scientific and Technological Development Program
  grantid: 20210101479JC
  funderid: 10.13039/501100013061
– fundername: Jilin Scientific and Technological Development Program
  grantid: 20220203051SF
  funderid: 10.13039/501100013061
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-3fe1b2867aabd04684976b15f97e5b7ce904a221aa23a4edee4e4bbff346ec103
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001245628200229&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Thu Sep 11 00:15:37 EDT 2025
Sat Nov 29 06:39:55 EST 2025
Tue Nov 18 21:39:59 EST 2025
Wed Aug 27 02:17:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-3fe1b2867aabd04684976b15f97e5b7ce904a221aa23a4edee4e4bbff346ec103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1915-2931
PQID 3031399095
PQPubID 75733
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2024_3365995
crossref_primary_10_1109_JSEN_2024_3365995
ieee_primary_10443347
proquest_journals_3031399095
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref11
Kingma (ref30) 2014
ref10
ref2
ref17
ref16
ref19
ref18
Shang (ref1) 2020; 46
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref16
  doi: 10.1016/j.yofte.2022.103136
– ident: ref17
  doi: 10.1364/oe.447670
– ident: ref2
  doi: 10.1007/s13320-021-0615-8
– ident: ref24
  doi: 10.3390/s22134951
– ident: ref23
  doi: 10.1109/50.618322
– ident: ref9
  doi: 10.1117/12.700807
– ident: ref12
  doi: 10.1117/12.2195016
– ident: ref18
  doi: 10.1364/oe.489964
– ident: ref25
  doi: 10.1364/oe.479689
– ident: ref27
  doi: 10.1109/cvpr.2016.90
– ident: ref19
  doi: 10.3390/s110403466
– ident: ref4
  doi: 10.2478/cee-2023-0037
– ident: ref14
  doi: 10.1109/jsen.2016.2516038
– ident: ref5
  doi: 10.1117/1.oe.58.7.072007
– ident: ref6
  doi: 10.1016/j.ifacol.2022.09.200
– ident: ref13
  doi: 10.1364/ao.46.002205
– ident: ref3
  doi: 10.1088/1742-6596/2293/1/012006
– ident: ref11
  doi: 10.3390/s17102368
– ident: ref28
  doi: 10.1016/s0030-3992(99)00071-7
– volume: 46
  start-page: 530
  issue: 5
  year: 2020
  ident: ref1
  article-title: Research progress of intelligent algorithms for improving FBG sensing performance
  publication-title: Opt. Technique
– ident: ref31
  doi: 10.1109/jlt.2020.2971240
– ident: ref15
  doi: 10.1088/1361-6501/aa637f
– ident: ref7
  doi: 10.1109/jlt.2016.2593260
– ident: ref20
  doi: 10.1364/oe.413443
– ident: ref26
  doi: 10.1109/tbme.2015.2468589
– ident: ref10
  doi: 10.1016/s0030-4018(02)01907-7
– ident: ref8
  doi: 10.3390/ma14051207
– ident: ref29
  doi: 10.1109/jlt.2018.2879119
– ident: ref21
  doi: 10.1109/jlt.2022.3155253
– ident: ref22
  doi: 10.1109/jsen.2023.3238028
– year: 2014
  ident: ref30
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
SSID ssj0019757
Score 2.4449074
Snippet In quasi-distributed fiber Bragg grating (FBG) temperature sensor networks, noise and spectral distortions affect the demodulation accuracy of the fiber...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10125
SubjectTerms 1-D convolutional neural network (1-DCNN)
Accuracy
Artificial neural networks
Bragg gratings
convolutional denoising autoencoder (CDAE)
Demodulation
fiber Bragg grating (FBG)
Fiber gratings
Goodness of fit
Location awareness
Machine learning
Noise reduction
Optical fiber sensors
Recognition
Reflection
Root-mean-square errors
Sensors
Spectra
spectral distortions
Temperature
temperature sensor networks
Temperature sensors
Title Recognition and Localization of FBG Temperature Sensing Based on Combined CDAE and 1-DCNN
URI https://ieeexplore.ieee.org/document/10443347
https://www.proquest.com/docview/3031399095
Volume 24
WOSCitedRecordID wos001245628200229&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB7aUlAf2lornv1BHnwSUpPN7GXz2F7vWoosYiucT0s2O1FB9qS9Cv73JtlcaREF3_IwCct-O5mZnZlvAN5Y7VWh0HNTFiVHLxWvWpRcS5Lajm30UdOwCV3X1XxuPuRm9dQLQ0Sp-IyO4zLl8ruFu4u_yoKGIyqFeh3WtdZDs9Z9ysDoROsZNFhwVHqeU5hSmHeXV9M6hIIFHis1jgxbj4xQmqryx1Wc7Mts-z-fbAe2siPJTgbkn8Ma9bvw7AG94C48yRPOv_56AZ8_riqFFj2zfcfeRyOWmzDZwrPZ6Tm7puBEDyTL7CpWtvdf2Gkwcx0LMuHmCFF0WE_OTqbpCMnPJnW9B59m0-vJBc9jFbgrDC658iTbohpra9suhMcVBpeklaU3mspWOzICbVFIawtlkToiJGxb7xWOyUmhXsJGv-jpFTCndSfJdUK0BjtylaLgEQiUFMI2J_0IxOo9Ny5zjsfRF9-bFHsI00RomghNk6EZwdv7LT8Gwo1_Ce9FLB4IDjCM4GCFZpN18rZRkaYyGF9Tvv7Ltn14Gk8fCnMOYGN5c0eHsOl-Lr_d3hylz-03UpfPcQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQSoceJQiFgr4wAnJxY_JOj62210KLBGii7ScIseZFCSURe0WiX-P7XirIgQSNx_GSZQv45nJzHwD8MKZTiuNHbeFKjh2UvOyQcmNJGnc2EUfNQ2bMFVVLpf2Q25WT70wRJSKz2g_LlMuv135i_irLGg4otZorsONAlHJoV3rMmlgTSL2DDosOGqzzElMKeyrtyfTKgSDCve1HkeOrd_MUJqr8sdhnCzM7O5_Pts9uJNdSXYwYH8frlG_A7evEAzuwHaecf7l5wP4_HFTK7TqmetbNo9mLLdhslXHZoev2YKCGz3QLLOTWNven7LDYOhaFmTC2RHi6LCeHB1M0yUkP5pU1S58mk0Xk2OeBytwryyuue5INqocG-eaNgTIJQanpJFFZw0VjfFkBTqlpHNKO6SWCAmbpus0jslLoR_CVr_q6REwb0wrybdCNBZb8qWm4BMIlBQCNy-7EYjNe659Zh2Pwy--1Sn6ELaO0NQRmjpDM4KXl1u-D5Qb_xLejVhcERxgGMHeBs06a-V5rSNRZTC_tnj8l23PYft48X5ez99U757ArXinoUxnD7bWZxf0FG76H-uv52fP0qf3C0gB0rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+and+Localization+of+FBG+Temperature+Sensing+Based+on+Combined+CDAE+and+1-DCNN&rft.jtitle=IEEE+sensors+journal&rft.au=Jiang%2C+Hong&rft.au=Tang%2C+Rui&rft.au=Wang%2C+Chenyang&rft.au=Zhao%2C+Yihan&rft.date=2024-04-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=7&rft.spage=10125&rft.epage=10137&rft_id=info:doi/10.1109%2FJSEN.2024.3365995&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2024_3365995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon