Simultaneous Diagonalization of Hermitian Matrices and its Application in PolSAR Ship Detection
A challenging issue in the field of marine remote sensing is the application of polarimetric synthetic aperture radar (PolSAR) to small ship detection in complicated environments. Several outstanding polarimetric detectors (such as the optimal polarimetric detector, polarimetric whitening filter, an...
Saved in:
| Published in: | IEEE transactions on geoscience and remote sensing Vol. 61; p. 1 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A challenging issue in the field of marine remote sensing is the application of polarimetric synthetic aperture radar (PolSAR) to small ship detection in complicated environments. Several outstanding polarimetric detectors (such as the optimal polarimetric detector, polarimetric whitening filter, and polarimetric notch filter, etc.), have been effectively implemented in practical applications. A linear combination model based on quadratic optimization is summarized to establish a general framework for polarimetric detectors, transitioning the PolSAR ship target detection from a model driven approach to a hybrid (model/data)-driven approach. However, the dimension of the covariance matrix may be high, and the computation cost will be large. The higher dimension of the covariance matrix requires a bigger the data demand. As a result, when the sample size is small, the model performance will degrade. In this paper, to decrease the computational complexity and improve the robustness, we propose a novel method called the simultaneous diagonalization transform (SDT). The proposed method enables an almost simplest representation of information from the covariance matrix providing a rapid detection algorithm. The simulation experiments demonstrate that polarimetric detectors based on SDT consistently outperform those based on other methods in terms of accuracy, efficiency, and sample size requirements across various complex backgrounds. Furthermore, the effectiveness, robust, and fastness of the polarimetric detector based on SDT is validated using real data collected by RadarSAT-2, GaoFen-3, and Sentinel-1A. |
|---|---|
| AbstractList | A challenging issue in the field of marine remote sensing is the application of polarimetric synthetic aperture radar (PolSAR) to small ship detection in complicated environments. Several outstanding polarimetric detectors (such as the optimal polarimetric detector, polarimetric whitening filter (PWF), and polarimetric notch filter (PNF)) have been effectively implemented in practical applications. A linear combination model based on quadratic optimization is summarized to establish a general framework for polarimetric detectors, transitioning the PolSAR ship target detection from a model-driven approach to a hybrid (model/data)-driven approach. However, the dimension of the covariance matrix may be high, and the computation cost will be large. The higher dimension of the covariance matrix requires a bigger data demand. As a result, when the sample size is small, the model performance will degrade. In this article, to decrease the computational complexity and improve the robustness, we propose a novel method called the simultaneous diagonalization transform (SDT). The proposed method enables an almost simplest representation of information from the covariance matrix providing a rapid detection algorithm. The simulation experiments demonstrate that polarimetric detectors based on SDT consistently outperform those based on other methods in terms of accuracy, efficiency, and sample size requirements across various complex backgrounds. Furthermore, the effectiveness, robust, and fastness of the polarimetric detector based on SDT is validated using real data collected by RadarSAT-2 (RS-2), GaoFen-3 (GF-3), and Sentinel-1A. A challenging issue in the field of marine remote sensing is the application of polarimetric synthetic aperture radar (PolSAR) to small ship detection in complicated environments. Several outstanding polarimetric detectors (such as the optimal polarimetric detector, polarimetric whitening filter, and polarimetric notch filter, etc.), have been effectively implemented in practical applications. A linear combination model based on quadratic optimization is summarized to establish a general framework for polarimetric detectors, transitioning the PolSAR ship target detection from a model driven approach to a hybrid (model/data)-driven approach. However, the dimension of the covariance matrix may be high, and the computation cost will be large. The higher dimension of the covariance matrix requires a bigger the data demand. As a result, when the sample size is small, the model performance will degrade. In this paper, to decrease the computational complexity and improve the robustness, we propose a novel method called the simultaneous diagonalization transform (SDT). The proposed method enables an almost simplest representation of information from the covariance matrix providing a rapid detection algorithm. The simulation experiments demonstrate that polarimetric detectors based on SDT consistently outperform those based on other methods in terms of accuracy, efficiency, and sample size requirements across various complex backgrounds. Furthermore, the effectiveness, robust, and fastness of the polarimetric detector based on SDT is validated using real data collected by RadarSAT-2, GaoFen-3, and Sentinel-1A. |
| Author | Marino, Armando Chen, Si-Wei Liu, Tao Yang, Ziyuan Gao, Gui |
| Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0002-9596-4536 surname: Liu fullname: Liu, Tao organization: School of electronic engineering, Naval University of Engineering, Wuhan, China – sequence: 2 givenname: Ziyuan orcidid: 0000-0001-7122-4173 surname: Yang fullname: Yang, Ziyuan organization: School of electronic engineering, Naval University of Engineering, Wuhan, China – sequence: 3 givenname: Gui surname: Gao fullname: Gao, Gui organization: Faculty of Geoscience and Environmental Engineering, Southwest Jiaotong University, Chengdu, China – sequence: 4 givenname: Armando orcidid: 0000-0002-4531-3102 surname: Marino fullname: Marino, Armando organization: Faculty of Natural Sciences, University of Stirling, UK – sequence: 5 givenname: Si-Wei orcidid: 0000-0001-8713-7664 surname: Chen fullname: Chen, Si-Wei organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China |
| BookMark | eNp9kD1PwzAQhi0EEuXjByAxWGJOOdtJbI9VCy0SCETLbF1SB4zSONjuAL-elnZADEw33Pvc6X1OyGHnO0vIBYMhY6CvF9Pn-ZADF0MhBEApDsiAFYXKoMzzQzIApsuMK82PyUmM7wAsL5gcEDN3q3WbsLN-HenE4avvsHVfmJzvqG_ozIaVSw47-oApuNpGit2SuhTpqO9bV--SrqNPvp2Pnun8zfV0YpOtt4szctRgG-35fp6Sl9ubxXiW3T9O78aj-6zmOk-ZaBBlBShRYS4Uq_JGoVai5lKUsFSKiaoqGuAIpWwqobBqkANYiZWWxVKckqvd3T74j7WNybz7ddhUiWbTGrTmCtQmxXapOvgYg21MH9wKw6dhYLYezdaj2Xo0e48bRv5hapd-SqeArv2XvNyRzlr765MAzSSIb_dsguc |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_JSTARS_2023_3347660 crossref_primary_10_1109_TGRS_2024_3419025 crossref_primary_10_1109_TGRS_2024_3474702 crossref_primary_10_3390_rs17050900 crossref_primary_10_1109_TGRS_2024_3491826 crossref_primary_10_3390_rs16040658 crossref_primary_10_1109_TGRS_2024_3375069 crossref_primary_10_1109_TGRS_2024_3397815 crossref_primary_10_3390_rs17071170 crossref_primary_10_1109_JSTARS_2025_3540902 crossref_primary_10_1109_TGRS_2024_3428346 |
| Cites_doi | 10.21105/joss.00861 10.1109/tgrs.2021.3055801 10.1109/tgrs.2019.2921629 10.1109/lgrs.2010.2090492 10.1109/tgrs.2016.2641041 10.1109/tgrs.2009.2019269 10.1007/s11042-017-4693-y 10.5589/m04-002 10.1109/joe.2012.2198931 10.1109/icaca.2016.7887916 10.1109/tap.1987.1144209 10.1109/IGARSS.1988.570053 10.1109/tgrs.2022.3198940 10.1117/12.177180 10.1109/TGRS.2020.2978268 10.1109/jstars.2022.3211431 10.5589/m11-054 10.1109/jstars.2017.2671904 10.1109/tgrs.2022.3217336 10.1109/tgrs.2022.3148979 10.1109/7.18677 10.1109/lgrs.2020.3020052 10.1109/lgrs.2004.830127 10.1109/tgrs.2022.3222691 10.1109/tgrs.2015.2402312 10.1109/72.80230 10.1137/040608830 10.1109/tgrs.2020.3022181 10.1109/62.63157 10.1109/7.53442 10.1017/cbo9780511810817 10.1109/lgrs.2021.3090368 10.1109/tcyb.2023.3267947 10.1109/tgrs.2017.2701813 10.1109/lgrs.2021.3121100 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2023.3330063 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TGRS_2023_3330063 10309170 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62171452 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AFRAH AGQYO AHBIQ AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 Y6R 5VS AAYXX AETIX AGSQL AI. AIBXA CITATION EJD H~9 IBMZZ ICLAB IFJZH VH1 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c294t-3faa7b0a7a8a4381b4f8a983c27360d8813bb5f02a067fb38abfa200e7ab975d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001183392900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:20:13 EDT 2025 Tue Nov 18 21:35:27 EST 2025 Sat Nov 29 03:32:28 EST 2025 Wed Aug 27 02:35:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-3faa7b0a7a8a4381b4f8a983c27360d8813bb5f02a067fb38abfa200e7ab975d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8713-7664 0000-0001-7122-4173 0000-0002-9596-4536 0000-0002-4531-3102 0000-0003-4596-5829 |
| PQID | 2890992808 |
| PQPubID | 85465 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_10309170 proquest_journals_2890992808 crossref_primary_10_1109_TGRS_2023_3330063 crossref_citationtrail_10_1109_TGRS_2023_3330063 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref17 ref16 ref19 ref18 Ester (ref38); 96 Liu (ref1) 2021; 10 Guan (ref33) 2020 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref34 doi: 10.21105/joss.00861 – ident: ref18 doi: 10.1109/tgrs.2021.3055801 – ident: ref13 doi: 10.1109/tgrs.2019.2921629 – ident: ref36 doi: 10.1109/lgrs.2010.2090492 – ident: ref32 doi: 10.1109/tgrs.2016.2641041 – volume: 96 start-page: 226 issue: 34 volume-title: Proc. KDD ident: ref38 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – ident: ref31 doi: 10.1109/tgrs.2009.2019269 – volume: 10 start-page: 1 issue: 1 year: 2021 ident: ref1 article-title: Review of ship detection in polarimetric synthetic aperture imagery publication-title: J. Radars – ident: ref35 doi: 10.1007/s11042-017-4693-y – ident: ref7 doi: 10.5589/m04-002 – ident: ref29 doi: 10.1109/joe.2012.2198931 – ident: ref30 doi: 10.1109/icaca.2016.7887916 – ident: ref2 doi: 10.1109/tap.1987.1144209 – ident: ref3 doi: 10.1109/IGARSS.1988.570053 – ident: ref16 doi: 10.1109/tgrs.2022.3198940 – ident: ref22 doi: 10.1117/12.177180 – ident: ref25 doi: 10.1109/TGRS.2020.2978268 – ident: ref37 doi: 10.1109/jstars.2022.3211431 – ident: ref9 doi: 10.5589/m11-054 – ident: ref11 doi: 10.1109/jstars.2017.2671904 – ident: ref20 doi: 10.1109/tgrs.2022.3217336 – ident: ref19 doi: 10.1109/tgrs.2022.3148979 – ident: ref4 doi: 10.1109/7.18677 – ident: ref17 doi: 10.1109/lgrs.2020.3020052 – ident: ref8 doi: 10.1109/lgrs.2004.830127 – ident: ref14 doi: 10.1109/tgrs.2022.3222691 – ident: ref10 doi: 10.1109/tgrs.2015.2402312 – ident: ref24 doi: 10.1109/72.80230 – ident: ref21 doi: 10.1137/040608830 – ident: ref26 doi: 10.1109/tgrs.2020.3022181 – ident: ref6 doi: 10.1109/62.63157 – ident: ref5 doi: 10.1109/7.53442 – ident: ref28 doi: 10.1017/cbo9780511810817 – ident: ref23 doi: 10.1109/lgrs.2021.3090368 – ident: ref27 doi: 10.1109/tcyb.2023.3267947 – ident: ref12 doi: 10.1109/tgrs.2017.2701813 – year: 2020 ident: ref33 article-title: Data separability for neural network classifiers and the development of a separability index publication-title: arXiv:2005.13120 – ident: ref15 doi: 10.1109/lgrs.2021.3121100 |
| SSID | ssj0014517 |
| Score | 2.497905 |
| Snippet | A challenging issue in the field of marine remote sensing is the application of polarimetric synthetic aperture radar (PolSAR) to small ship detection in... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Clutter Complexity Computation Covariance matrices Covariance matrix Detection Detectors General Framework Gold Lasso regression Marine vehicles Notch filters Optimization Performance degradation Polarimetric synthetic aperture radar (PolSAR) Polarimetry Quadratic optimization Radarsat Remote sensing Robustness (mathematics) SAR (radar) Sensors Ship detection Simultaneous diagonalization Synthetic aperture radar Target detection |
| Title | Simultaneous Diagonalization of Hermitian Matrices and its Application in PolSAR Ship Detection |
| URI | https://ieeexplore.ieee.org/document/10309170 https://www.proquest.com/docview/2890992808 |
| Volume | 61 |
| WOSCitedRecordID | wos001183392900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8qCnrwc-L8IgdPQrd0aZvkOJwfBx1jU9mtvDSpFkY31s6_3yStOhEFbzkkpfSX1_d-7xOhC8GlUTp-6GlDaL3A1vmAImYFEBo-kiru_JDP96zf5-OxGNTF6q4WRmvtks90yy5dLF9Nk4V1lbXtSCxDLwxDX2Usqoq1PkMGQejXtdGRZ1hEpw5h-kS0H2-Ho5adE96ihr6TiH5TQm6qyo9fsdMvNzv_fLNdtF0bkrhbIb-HVnS-j7aW2gvuow2X3pkUBygeZTZzEHJtiD7uZfDiDPCqBBNPU3xnc2KssOMH17NfFxhyhbOywN2vEDfOcjyYTkbdIR69ZjPc06XL5Mob6Onm-vHqzqtHK3hJRwSlR1MAJgkw4GCbfMkg5SA4TYw1ExHFuU-lDFPSAaPNUkk5yBSMQGkGUrBQ0UO0lk9zfYSwpoHSzFcMbDM_QSASVKWEKTCmngx4E5GPbx0ndd9xO_5iEjv-QURs4YktPHENTxNdfh6ZVU03_trcsHgsbaygaKLTD0TjWi6L2IZVhehwwo9_OXaCNu3TKy_LKVor5wt9htaTtzIr5ufuyr0DsGvSbA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4hYAUcgGVBlKcPnFZKceKksY8VryJKhWhZcbPGsbMbCaWIBH4_thMeKwQSNx9sJcrnycw3T4ADwZVVOmESGEtog9jV-aCmdoWYWD6Sa-79kH-G6WjEb2_FVVus7mthjDE--cx03dLH8vU0e3SuskM3EsvSC8vQ55I4jmhTrvUaNIiTsK2O7gWWR0RtEDOk4nBydj3uuknhXWYJPO2x_9SQn6vy4WfsNczpyjffbRWWW1OS9Bvsf8KMKddg6V2DwTX44RM8s-oXyHHhcgexNJbqk-MC_3oTvCnCJNOcDFxWjBN3cum79puKYKlJUVek_xbkJkVJrqZ34_41Gf8r7smxqX0uV7kON6cnk6NB0A5XCLJIxHXAcsRUUUyRo2vzpeKco-Ass_ZMj2rOQ6ZUktMIrT7LFeOocrQiZVJUIk0024DZclqaTSCGxdqkoU7RtfMTFHuC6ZymGq2xp2LeAfryrWXWdh53AzDupGcgVEgHj3TwyBaeDvx-PXLftN34avO6w-PdxgaKDuy8ICpbyaykC6wKEXHKtz45tg8Lg8nlUA7PRxfbsOie1PhcdmC2fng0uzCfPdVF9bDnr98zy5nVsw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+Diagonalization+of+Hermitian+Matrices+and+Its+Application+in+PolSAR+Ship+Detection&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Liu%2C+Tao&rft.au=Yang%2C+Ziyuan&rft.au=Gao%2C+Gui&rft.au=Marino%2C+Armando&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=61&rft.spage=1&rft_id=info:doi/10.1109%2FTGRS.2023.3330063&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |