Simultaneous Diagonalization of Hermitian Matrices and its Application in PolSAR Ship Detection

A challenging issue in the field of marine remote sensing is the application of polarimetric synthetic aperture radar (PolSAR) to small ship detection in complicated environments. Several outstanding polarimetric detectors (such as the optimal polarimetric detector, polarimetric whitening filter, an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 61; p. 1
Main Authors: Liu, Tao, Yang, Ziyuan, Gao, Gui, Marino, Armando, Chen, Si-Wei
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A challenging issue in the field of marine remote sensing is the application of polarimetric synthetic aperture radar (PolSAR) to small ship detection in complicated environments. Several outstanding polarimetric detectors (such as the optimal polarimetric detector, polarimetric whitening filter, and polarimetric notch filter, etc.), have been effectively implemented in practical applications. A linear combination model based on quadratic optimization is summarized to establish a general framework for polarimetric detectors, transitioning the PolSAR ship target detection from a model driven approach to a hybrid (model/data)-driven approach. However, the dimension of the covariance matrix may be high, and the computation cost will be large. The higher dimension of the covariance matrix requires a bigger the data demand. As a result, when the sample size is small, the model performance will degrade. In this paper, to decrease the computational complexity and improve the robustness, we propose a novel method called the simultaneous diagonalization transform (SDT). The proposed method enables an almost simplest representation of information from the covariance matrix providing a rapid detection algorithm. The simulation experiments demonstrate that polarimetric detectors based on SDT consistently outperform those based on other methods in terms of accuracy, efficiency, and sample size requirements across various complex backgrounds. Furthermore, the effectiveness, robust, and fastness of the polarimetric detector based on SDT is validated using real data collected by RadarSAT-2, GaoFen-3, and Sentinel-1A.
AbstractList A challenging issue in the field of marine remote sensing is the application of polarimetric synthetic aperture radar (PolSAR) to small ship detection in complicated environments. Several outstanding polarimetric detectors (such as the optimal polarimetric detector, polarimetric whitening filter (PWF), and polarimetric notch filter (PNF)) have been effectively implemented in practical applications. A linear combination model based on quadratic optimization is summarized to establish a general framework for polarimetric detectors, transitioning the PolSAR ship target detection from a model-driven approach to a hybrid (model/data)-driven approach. However, the dimension of the covariance matrix may be high, and the computation cost will be large. The higher dimension of the covariance matrix requires a bigger data demand. As a result, when the sample size is small, the model performance will degrade. In this article, to decrease the computational complexity and improve the robustness, we propose a novel method called the simultaneous diagonalization transform (SDT). The proposed method enables an almost simplest representation of information from the covariance matrix providing a rapid detection algorithm. The simulation experiments demonstrate that polarimetric detectors based on SDT consistently outperform those based on other methods in terms of accuracy, efficiency, and sample size requirements across various complex backgrounds. Furthermore, the effectiveness, robust, and fastness of the polarimetric detector based on SDT is validated using real data collected by RadarSAT-2 (RS-2), GaoFen-3 (GF-3), and Sentinel-1A.
A challenging issue in the field of marine remote sensing is the application of polarimetric synthetic aperture radar (PolSAR) to small ship detection in complicated environments. Several outstanding polarimetric detectors (such as the optimal polarimetric detector, polarimetric whitening filter, and polarimetric notch filter, etc.), have been effectively implemented in practical applications. A linear combination model based on quadratic optimization is summarized to establish a general framework for polarimetric detectors, transitioning the PolSAR ship target detection from a model driven approach to a hybrid (model/data)-driven approach. However, the dimension of the covariance matrix may be high, and the computation cost will be large. The higher dimension of the covariance matrix requires a bigger the data demand. As a result, when the sample size is small, the model performance will degrade. In this paper, to decrease the computational complexity and improve the robustness, we propose a novel method called the simultaneous diagonalization transform (SDT). The proposed method enables an almost simplest representation of information from the covariance matrix providing a rapid detection algorithm. The simulation experiments demonstrate that polarimetric detectors based on SDT consistently outperform those based on other methods in terms of accuracy, efficiency, and sample size requirements across various complex backgrounds. Furthermore, the effectiveness, robust, and fastness of the polarimetric detector based on SDT is validated using real data collected by RadarSAT-2, GaoFen-3, and Sentinel-1A.
Author Marino, Armando
Chen, Si-Wei
Liu, Tao
Yang, Ziyuan
Gao, Gui
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0002-9596-4536
  surname: Liu
  fullname: Liu, Tao
  organization: School of electronic engineering, Naval University of Engineering, Wuhan, China
– sequence: 2
  givenname: Ziyuan
  orcidid: 0000-0001-7122-4173
  surname: Yang
  fullname: Yang, Ziyuan
  organization: School of electronic engineering, Naval University of Engineering, Wuhan, China
– sequence: 3
  givenname: Gui
  surname: Gao
  fullname: Gao, Gui
  organization: Faculty of Geoscience and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
– sequence: 4
  givenname: Armando
  orcidid: 0000-0002-4531-3102
  surname: Marino
  fullname: Marino, Armando
  organization: Faculty of Natural Sciences, University of Stirling, UK
– sequence: 5
  givenname: Si-Wei
  orcidid: 0000-0001-8713-7664
  surname: Chen
  fullname: Chen, Si-Wei
  organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China
BookMark eNp9kD1PwzAQhi0EEuXjByAxWGJOOdtJbI9VCy0SCETLbF1SB4zSONjuAL-elnZADEw33Pvc6X1OyGHnO0vIBYMhY6CvF9Pn-ZADF0MhBEApDsiAFYXKoMzzQzIApsuMK82PyUmM7wAsL5gcEDN3q3WbsLN-HenE4avvsHVfmJzvqG_ozIaVSw47-oApuNpGit2SuhTpqO9bV--SrqNPvp2Pnun8zfV0YpOtt4szctRgG-35fp6Sl9ubxXiW3T9O78aj-6zmOk-ZaBBlBShRYS4Uq_JGoVai5lKUsFSKiaoqGuAIpWwqobBqkANYiZWWxVKckqvd3T74j7WNybz7ddhUiWbTGrTmCtQmxXapOvgYg21MH9wKw6dhYLYezdaj2Xo0e48bRv5hapd-SqeArv2XvNyRzlr765MAzSSIb_dsguc
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_JSTARS_2023_3347660
crossref_primary_10_1109_TGRS_2024_3419025
crossref_primary_10_1109_TGRS_2024_3474702
crossref_primary_10_3390_rs17050900
crossref_primary_10_1109_TGRS_2024_3491826
crossref_primary_10_3390_rs16040658
crossref_primary_10_1109_TGRS_2024_3375069
crossref_primary_10_1109_TGRS_2024_3397815
crossref_primary_10_3390_rs17071170
crossref_primary_10_1109_JSTARS_2025_3540902
crossref_primary_10_1109_TGRS_2024_3428346
Cites_doi 10.21105/joss.00861
10.1109/tgrs.2021.3055801
10.1109/tgrs.2019.2921629
10.1109/lgrs.2010.2090492
10.1109/tgrs.2016.2641041
10.1109/tgrs.2009.2019269
10.1007/s11042-017-4693-y
10.5589/m04-002
10.1109/joe.2012.2198931
10.1109/icaca.2016.7887916
10.1109/tap.1987.1144209
10.1109/IGARSS.1988.570053
10.1109/tgrs.2022.3198940
10.1117/12.177180
10.1109/TGRS.2020.2978268
10.1109/jstars.2022.3211431
10.5589/m11-054
10.1109/jstars.2017.2671904
10.1109/tgrs.2022.3217336
10.1109/tgrs.2022.3148979
10.1109/7.18677
10.1109/lgrs.2020.3020052
10.1109/lgrs.2004.830127
10.1109/tgrs.2022.3222691
10.1109/tgrs.2015.2402312
10.1109/72.80230
10.1137/040608830
10.1109/tgrs.2020.3022181
10.1109/62.63157
10.1109/7.53442
10.1017/cbo9780511810817
10.1109/lgrs.2021.3090368
10.1109/tcyb.2023.3267947
10.1109/tgrs.2017.2701813
10.1109/lgrs.2021.3121100
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2023.3330063
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1
ExternalDocumentID 10_1109_TGRS_2023_3330063
10309170
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62171452
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
Y6R
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-3faa7b0a7a8a4381b4f8a983c27360d8813bb5f02a067fb38abfa200e7ab975d3
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001183392900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:20:13 EDT 2025
Tue Nov 18 21:35:27 EST 2025
Sat Nov 29 03:32:28 EST 2025
Wed Aug 27 02:35:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-3faa7b0a7a8a4381b4f8a983c27360d8813bb5f02a067fb38abfa200e7ab975d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8713-7664
0000-0001-7122-4173
0000-0002-9596-4536
0000-0002-4531-3102
0000-0003-4596-5829
PQID 2890992808
PQPubID 85465
PageCount 1
ParticipantIDs ieee_primary_10309170
proquest_journals_2890992808
crossref_primary_10_1109_TGRS_2023_3330063
crossref_citationtrail_10_1109_TGRS_2023_3330063
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref17
ref16
ref19
ref18
Ester (ref38); 96
Liu (ref1) 2021; 10
Guan (ref33) 2020
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref34
  doi: 10.21105/joss.00861
– ident: ref18
  doi: 10.1109/tgrs.2021.3055801
– ident: ref13
  doi: 10.1109/tgrs.2019.2921629
– ident: ref36
  doi: 10.1109/lgrs.2010.2090492
– ident: ref32
  doi: 10.1109/tgrs.2016.2641041
– volume: 96
  start-page: 226
  issue: 34
  volume-title: Proc. KDD
  ident: ref38
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– ident: ref31
  doi: 10.1109/tgrs.2009.2019269
– volume: 10
  start-page: 1
  issue: 1
  year: 2021
  ident: ref1
  article-title: Review of ship detection in polarimetric synthetic aperture imagery
  publication-title: J. Radars
– ident: ref35
  doi: 10.1007/s11042-017-4693-y
– ident: ref7
  doi: 10.5589/m04-002
– ident: ref29
  doi: 10.1109/joe.2012.2198931
– ident: ref30
  doi: 10.1109/icaca.2016.7887916
– ident: ref2
  doi: 10.1109/tap.1987.1144209
– ident: ref3
  doi: 10.1109/IGARSS.1988.570053
– ident: ref16
  doi: 10.1109/tgrs.2022.3198940
– ident: ref22
  doi: 10.1117/12.177180
– ident: ref25
  doi: 10.1109/TGRS.2020.2978268
– ident: ref37
  doi: 10.1109/jstars.2022.3211431
– ident: ref9
  doi: 10.5589/m11-054
– ident: ref11
  doi: 10.1109/jstars.2017.2671904
– ident: ref20
  doi: 10.1109/tgrs.2022.3217336
– ident: ref19
  doi: 10.1109/tgrs.2022.3148979
– ident: ref4
  doi: 10.1109/7.18677
– ident: ref17
  doi: 10.1109/lgrs.2020.3020052
– ident: ref8
  doi: 10.1109/lgrs.2004.830127
– ident: ref14
  doi: 10.1109/tgrs.2022.3222691
– ident: ref10
  doi: 10.1109/tgrs.2015.2402312
– ident: ref24
  doi: 10.1109/72.80230
– ident: ref21
  doi: 10.1137/040608830
– ident: ref26
  doi: 10.1109/tgrs.2020.3022181
– ident: ref6
  doi: 10.1109/62.63157
– ident: ref5
  doi: 10.1109/7.53442
– ident: ref28
  doi: 10.1017/cbo9780511810817
– ident: ref23
  doi: 10.1109/lgrs.2021.3090368
– ident: ref27
  doi: 10.1109/tcyb.2023.3267947
– ident: ref12
  doi: 10.1109/tgrs.2017.2701813
– year: 2020
  ident: ref33
  article-title: Data separability for neural network classifiers and the development of a separability index
  publication-title: arXiv:2005.13120
– ident: ref15
  doi: 10.1109/lgrs.2021.3121100
SSID ssj0014517
Score 2.497905
Snippet A challenging issue in the field of marine remote sensing is the application of polarimetric synthetic aperture radar (PolSAR) to small ship detection in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Clutter
Complexity
Computation
Covariance matrices
Covariance matrix
Detection
Detectors
General Framework
Gold
Lasso regression
Marine vehicles
Notch filters
Optimization
Performance degradation
Polarimetric synthetic aperture radar (PolSAR)
Polarimetry
Quadratic optimization
Radarsat
Remote sensing
Robustness (mathematics)
SAR (radar)
Sensors
Ship detection
Simultaneous diagonalization
Synthetic aperture radar
Target detection
Title Simultaneous Diagonalization of Hermitian Matrices and its Application in PolSAR Ship Detection
URI https://ieeexplore.ieee.org/document/10309170
https://www.proquest.com/docview/2890992808
Volume 61
WOSCitedRecordID wos001183392900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG6UaKIHPxAjiqYHTyaDjn21RyIiByUE0HBbuu6tLiGDsOHvt-0GYowm3nZol2XP3r3P0_cLoVvNMWKXghXEnm-5ykdYFDxqgR8JyQWLbdOu6fUpGAzodMqGZbG6qYUBAJN8Bk19aWL58Vys9FFZS4_EUvJCKfTdIPCLYq1NyMD17LI22reUimiXIUybsNbkcTRu6jnhTUfJd-I735yQmary41ds_Evv-J9PdoKOSiKJOwXyp2gH0io63GovWEX7Jr1TZGcoHCc6c5CnoIQ-7ib8zRDwogQTzyXu65wYbez42fTshwzzNMZJnuHOV4gbJykezmfjzgiP35MF7kJuMrnSGnrpPUzu-1Y5WsESbebmliM5DyLCA065bvIVuZJyRh2h2IxPYkptJ4o8SdpceTMZOZRHkiuDgoBHLPBi5xxV0nkKFwjHSlzbPheSKC4jgVEPpABPEQPblYQ7dUTW7zoUZd9xPf5iFhr9QVio4Qk1PGEJTx3dbbYsiqYbfy2uaTy2FhZQ1FFjjWhY2mUW6rAqY21K6OUv267Qgb57ccrSQJV8uYJrtCc-8iRb3phP7hPbdNL9
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD5ChWnjARhjWsdlfuBpUlrnbj9WFChaqRDtpr5ZjnO8RUJp1YT9_tlOKJ3QkPaWB1uJ8uXkfJ_PDeDccow8YuileZx4kfERHsOYeZhkSkvFc9-1a_oxTicTNp_zu7ZY3dXCIKJLPsOevXSx_HyhHu1RWd-OxDLywij07TiKAtqUa62DBlHst9XRiWd0RNAGMX3K-7Pr-2nPTgrvhUbA0yT8yw25uSovfsbOw1zt_-ezHcBeSyXJoMH-PWxheQi7Gw0GD-GNS_BU1QcQ08LmDsoSjdQnw0L-dBS8KcIkC01GNivGmju5dV37sSKyzElRV2TwHOQmRUnuFg_TwT2Z_iqWZIi1y-Uqj-D71eXsYuS1wxU8FfCo9kItZZpRmUombZuvLNJMchYqw2cSmjPmh1kWaxpI4890FjKZaWlMClOZ8TTOw4_QKRclfgKSG3ntJ1JpatiMRs5i1ApjQw38SFMZdoE-vWuh2s7jdgDGg3AKhHJh4REWHtHC04Wv6y3Lpu3Ga4uPLB4bCxsounDyhKhoLbMSNrDKecAo-_yPbV_g7Wh2Oxbjm8m3Y3hn79ScuZxAp1494insqN91Ua3O3Of3B_4m1kQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+Diagonalization+of+Hermitian+Matrices+and+Its+Application+in+PolSAR+Ship+Detection&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Liu%2C+Tao&rft.au=Yang%2C+Ziyuan&rft.au=Gao%2C+Gui&rft.au=Marino%2C+Armando&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=61&rft.spage=1&rft_id=info:doi/10.1109%2FTGRS.2023.3330063&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon