Identification of Pipeline Leak Sizes Based on Chaos-Grey Wolf-Support Vector Machine

Accurately identifying pipeline leak size is of great significance for hazard assessment and timely rescue. This paper proposes an identification method of non-metallic pipeline leak size based on chaos-grey wolf-support vector machine (C-G-SVM). The acoustic signal features of different leak sizes...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE sensors journal Ročník 23; číslo 19; s. 1
Hlavní autori: Han, Xiaojuan, Liu, Junzengjing, Cui, Xiwang, Gao, Yan, Yan, Zhaoli
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1530-437X, 1558-1748
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Accurately identifying pipeline leak size is of great significance for hazard assessment and timely rescue. This paper proposes an identification method of non-metallic pipeline leak size based on chaos-grey wolf-support vector machine (C-G-SVM). The acoustic signal features of different leak sizes are extracted from the perspectives of time domain, frequency domain, and shape. By using the Grey Relational Analysis (GRA) method, the dimensionality of the above features is further reduced. Then, a non-metallic pipeline leak size identification model based on C-G-SVM is established. The parameters of the SVM model are optimized by combining chaotic local search with grey wolf optimization algorithm to improve the identification accuracy of pipeline leak sizes. Finally, the influences of different features, identification methods, and sampling duration on the identification accuracy of pipeline leak sizes are compared and analyzed. The analysis of non-metallic pipeline leak test data based on acoustic methods verifies the effectiveness of this method. When the sampling duration is 20 s, the average identification accuracy reaches over 90%. The results show that this method can accurately identify the leak size of non-metallic pipelines, providing a theoretical basis for engineering applications.
AbstractList Accurately identifying pipeline leak size is of great significance for hazard assessment and timely rescue. This paper proposes an identification method of non-metallic pipeline leak size based on chaos-grey wolf-support vector machine (C-G-SVM). The acoustic signal features of different leak sizes are extracted from the perspectives of time domain, frequency domain, and shape. By using the Grey Relational Analysis (GRA) method, the dimensionality of the above features is further reduced. Then, a non-metallic pipeline leak size identification model based on C-G-SVM is established. The parameters of the SVM model are optimized by combining chaotic local search with grey wolf optimization algorithm to improve the identification accuracy of pipeline leak sizes. Finally, the influences of different features, identification methods, and sampling duration on the identification accuracy of pipeline leak sizes are compared and analyzed. The analysis of non-metallic pipeline leak test data based on acoustic methods verifies the effectiveness of this method. When the sampling duration is 20 s, the average identification accuracy reaches over 90%. The results show that this method can accurately identify the leak size of non-metallic pipelines, providing a theoretical basis for engineering applications.
Accurately identifying pipeline leak size is of great significance for hazard assessment and timely rescue. This article proposes an identification method of nonmetallic pipeline leak size based on chaos-gray wolf-support vector machine (C-G-SVM). The acoustic signal features of different leak sizes are extracted from the perspectives of time domain, frequency domain, and shape. By using the gray relational analysis (GRA) method, the dimensionality of the above features is further reduced. Then, a nonmetallic pipeline leak size identification model based on C-G-SVM is established. The parameters of the SVM model are optimized by combining chaotic local search with gray wolf optimization (GWO) algorithm to improve the identification accuracy of pipeline leak sizes. Finally, the influences of different features, identification methods, and sampling duration on the identification accuracy of pipeline leak sizes are compared and analyzed. The analysis of nonmetallic pipeline leak test data based on acoustic methods verifies the effectiveness of this method. When the sampling duration is 20 s, the average identification accuracy reaches over 90%. The results show that this method can accurately identify the leak size of nonmetallic pipelines, providing a theoretical basis for engineering applications.
Author Gao, Yan
Han, Xiaojuan
Liu, Junzengjing
Cui, Xiwang
Yan, Zhaoli
Author_xml – sequence: 1
  givenname: Xiaojuan
  orcidid: 0000-0003-2025-3948
  surname: Han
  fullname: Han, Xiaojuan
  organization: School of Control and Computer Engineering, North China Electric Power University, Beijing, China
– sequence: 2
  givenname: Junzengjing
  surname: Liu
  fullname: Liu, Junzengjing
  organization: School of Control and Computer Engineering, North China Electric Power University, Beijing, China
– sequence: 3
  givenname: Xiwang
  orcidid: 0000-0001-5053-8317
  surname: Cui
  fullname: Cui, Xiwang
  organization: School of Instrument Science and Opto-electronics Engineering, Beijing Information Science and Technology University, Beijing, China
– sequence: 4
  givenname: Yan
  orcidid: 0000-0002-7253-5309
  surname: Gao
  fullname: Gao, Yan
  organization: Institute of Acoustics, State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Zhaoli
  surname: Yan
  fullname: Yan, Zhaoli
  organization: Institute of Acoustics, Key Laboratory of Noise and Vibration Research, Chinese Academy of Sciences, Beijing, China
BookMark eNp9kMtOwzAQRS1UJNrCByCxsMQ6xa_EyRKqUorKQyoFdpHjjFWXEgc7XZSvJ6EsEAtWM9LcM1c6A9SrXAUInVIyopRkF7eLyf2IEcZHnBOZSH6A-jSO04hKkfa6nZNIcPl6hAYhrAmhmYxlHy1nJVSNNVarxroKO4MfbQ0bWwGeg3rDC_sJAV-pACVu7-OVciGaetjhF7cx0WJb1843-Bl04zy-U3rVosfo0KhNgJOfOUTL68nT-CaaP0xn48t5pFkmmogbWkgKsjAaYsYLmSRKFWUqysKQLC1TmlIjiGYijoVORKESYJkysaKSaiX4EJ3v_9befWwhNPnabX3VVuYslUwIIjPZpug-pb0LwYPJa2_fld_llOSdvbyzl3f28h97LSP_MNo234oar-zmX_JsT1oA-NXEOGdU8i9R4369
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1016_j_apacoust_2024_110180
crossref_primary_10_1088_1361_6501_ad21d7
crossref_primary_10_1109_JSEN_2024_3454269
crossref_primary_10_1016_j_oceaneng_2024_119203
crossref_primary_10_1016_j_watres_2025_123793
crossref_primary_10_1016_j_apacoust_2025_110820
crossref_primary_10_1109_JSEN_2024_3383519
crossref_primary_10_1109_JSEN_2024_3424524
Cites_doi 10.1109/TIM.2016.2634630
10.1016/j.jlp.2022.104771
10.1109/JSEN.2016.2540299
10.1109/JSEN.2018.2871720
10.1109/TIM.2022.3150864
10.1016/j.advengsoft.2013.12.007
10.1109/JSEN.2020.3009091
10.1109/TIM.2020.3038491
10.1016/j.oceaneng.2021.109737
10.1109/JSEN.2022.3217529
10.1016/j.ymssp.2020.106787
10.1016/j.ijpvp.2020.104243
10.1109/TIM.2021.3130680
10.1016/j.measurement.2022.111873
10.1016/j.ymssp.2022.109810
10.1016/j.apacoust.2021.108255
10.1109/JSEN.2022.3211343
10.1016/j.ymssp.2020.107056
10.3390/w14182833
10.1016/j.jappgeo.2019.103918
10.1016/j.psep.2016.08.014
10.1016/j.ymssp.2022.109889
10.3390/s22186897
10.1109/JSEN.2021.3060292
10.3390/s23020710
10.1016/j.tust.2019.103249
10.1109/ACCESS.2021.3129703
10.1016/j.sna.2015.11.029
10.3390/app10061933
10.1109/TIM.2022.3219482
10.3390/app12136770
10.1016/j.measurement.2020.108284
10.1109/JSEN.2017.2740220
10.1016/j.measurement.2019.06.050
10.1016/j.psep.2022.05.043
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2023.3307673
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2023_3307673
10233217
Genre orig-research
GrantInformation_xml – fundername: the State Key Laboratory of Acoustics, Chinese Academy of Sciences
  grantid: No. SKLA202204
– fundername: Research Project of Beijing Education Committee
  grantid: No. KM202111232021
– fundername: National Natural Science Foundation of China
  grantid: No.11974376; No.12104060
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-3f1b71e7bfce523b766aabd84dbf098d8181f40c24554c64ba6e29af5a171ca43
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001087769200104&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:07:05 EDT 2025
Sat Nov 29 06:39:41 EST 2025
Tue Nov 18 21:39:25 EST 2025
Wed Aug 27 02:21:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-3f1b71e7bfce523b766aabd84dbf098d8181f40c24554c64ba6e29af5a171ca43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2025-3948
0000-0002-7253-5309
0000-0001-5053-8317
0000-0003-1607-2888
PQID 2872440797
PQPubID 75733
PageCount 1
ParticipantIDs crossref_primary_10_1109_JSEN_2023_3307673
ieee_primary_10233217
crossref_citationtrail_10_1109_JSEN_2023_3307673
proquest_journals_2872440797
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref34
  doi: 10.1109/TIM.2016.2634630
– ident: ref19
  doi: 10.1016/j.jlp.2022.104771
– ident: ref5
  doi: 10.1109/JSEN.2016.2540299
– ident: ref3
  doi: 10.1109/JSEN.2018.2871720
– ident: ref13
  doi: 10.1109/TIM.2022.3150864
– ident: ref35
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref17
  doi: 10.1109/JSEN.2020.3009091
– ident: ref6
  doi: 10.1109/TIM.2020.3038491
– ident: ref24
  doi: 10.1016/j.oceaneng.2021.109737
– ident: ref25
  doi: 10.1109/JSEN.2022.3217529
– ident: ref22
  doi: 10.1016/j.ymssp.2020.106787
– ident: ref31
  doi: 10.1016/j.ijpvp.2020.104243
– ident: ref2
  doi: 10.1109/TIM.2021.3130680
– ident: ref8
  doi: 10.1016/j.measurement.2022.111873
– ident: ref27
  doi: 10.1016/j.ymssp.2022.109810
– ident: ref16
  doi: 10.1016/j.apacoust.2021.108255
– ident: ref28
  doi: 10.1109/JSEN.2022.3211343
– ident: ref4
  doi: 10.1016/j.ymssp.2020.107056
– ident: ref23
  doi: 10.3390/w14182833
– ident: ref9
  doi: 10.1016/j.jappgeo.2019.103918
– ident: ref12
  doi: 10.1016/j.psep.2016.08.014
– ident: ref32
  doi: 10.1016/j.ymssp.2022.109889
– ident: ref15
  doi: 10.3390/s22186897
– ident: ref1
  doi: 10.1109/JSEN.2021.3060292
– ident: ref7
  doi: 10.3390/s23020710
– ident: ref18
  doi: 10.1016/j.tust.2019.103249
– ident: ref26
  doi: 10.1109/ACCESS.2021.3129703
– ident: ref11
  doi: 10.1016/j.sna.2015.11.029
– ident: ref10
  doi: 10.3390/app10061933
– ident: ref33
  doi: 10.1109/TIM.2022.3219482
– ident: ref21
  doi: 10.3390/app12136770
– ident: ref20
  doi: 10.1016/j.measurement.2020.108284
– ident: ref14
  doi: 10.1109/JSEN.2017.2740220
– ident: ref29
  doi: 10.1016/j.measurement.2019.06.050
– ident: ref30
  doi: 10.1016/j.psep.2022.05.043
SSID ssj0019757
Score 2.4346774
Snippet Accurately identifying pipeline leak size is of great significance for hazard assessment and timely rescue. This paper proposes an identification method of...
Accurately identifying pipeline leak size is of great significance for hazard assessment and timely rescue. This article proposes an identification method of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Acoustics
Algorithms
Chaotic local search
Feature extraction
Grey relational analysis
Grey Wolf optimization
Hazard assessment
Identification
Identification methods
Leak detection
Optimization
Parameter identification
Pipelines
Sampling
Shape
Support vector machine
Support vector machines
Time-domain analysis
Title Identification of Pipeline Leak Sizes Based on Chaos-Grey Wolf-Support Vector Machine
URI https://ieeexplore.ieee.org/document/10233217
https://www.proquest.com/docview/2872440797
Volume 23
WOSCitedRecordID wos001087769200104&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFD7oUrA-2GoV16rkwadC1mQmTjaPKloRXQQv3bchlxNclB1xdwX99SaZKJbSQt8GJhnCfJM538m5fAA7hcEU36FM9T0NjNhSw6s9iiIYT8kdcs2S2IQcDPrDobrIxeqpFgYRU_IZ9uJliuW7xs7iUdlubDNQBg49D_NSVm2x1nvIQMnU1jPsYEZFKYc5hMmZ2j29PBr0ok54L3jvspLlb0Yoqar88StO9uX4y3-u7CssZSJJ9lvkl2EOxyuw-KG94AosZIXz2-dvcN1W5Pp8REcaTy5GD7EYHckZ6jtyOXrBCTkIRs2RcP_wVjcT-jMATX41955G9c_A1MlNOuUn5ykHE1fh-vjo6vCEZkkFagslprT03EiO0niLwQU1sqq0Nq4vnPEBLRfMN_eC2UIEmmErYXSFhdJ-T3PJrRblGnTGzRjXgXjlnMBCFpVJfpf2yIURVrO-N04XXWBv77i2ud94lL24r5PfwVQdYakjLHWGpQs_3qc8tM02_jV4NeLwYWALQRc235Cs836c1GF9gccwqeTGX6Z9h8_x6W2e3iZ0po8z3IJP9mk6mjxup0_tFQh8z60
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFD5YLdg-tNZautZqHnwqZE1mspPNYyve10Xw0n0bcjnBpbIj7lpof71JJopFLPg2MAkT5pvM-U7O5QPYLAym-A5lqu9pYMSWGl71KIpgPCV3yDVLYhNyOOyPRuokF6unWhhETMln2I2XKZbvGnsbj8q2YpuBMnDoV7DQE6JgbbnWQ9BAydTYM-xhRkUpRzmIyZnaOjzdGXajUng3-O-ykuU_Zijpqjz5GScLs_v-hWtbgneZSpLvLfYfYA4ny_D2UYPBZVjMGueXfz7CeVuT6_MhHWk8ORlfx3J0JAPUv8jp-C9OyY9g1hwJ97cvdTOlewFq8rO58jTqfwauTi7SOT85TlmYuALnuztn2_s0iypQWygxo6XnRnKUxlsMTqiRVaW1cX3hjA94uWDAuRfMFiIQDVsJoysslPY9zSW3WpSfYH7STPAzEK-cE1jIojLJ89IeuTDCatb3xumiA-z-Hdc2dxyPwhdXdfI8mKojLHWEpc6wdODbw5Trtt3G_wavRBweDWwh6MDaPZJ13pHTOqwvMBkmlVx9ZtoGLO6fHQ_qwcHw6Au8iU9qs_bWYH52c4tf4bX9PRtPb9bTZ3cH_6vS9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Pipeline+Leak+Sizes+Based+on+Chaos-Gray+Wolf-Support+Vector+Machine&rft.jtitle=IEEE+sensors+journal&rft.au=Han%2C+Xiaojuan&rft.au=Liu%2C+Junzengjing&rft.au=Cui%2C+Xiwang&rft.au=Gao%2C+Yan&rft.date=2023-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=19&rft.spage=23179&rft_id=info:doi/10.1109%2FJSEN.2023.3307673&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon