Content-Caching-Oriented Popularity Forecast and User Clustering
Content popularity forecast is a key enabler toward the realization of proactive content caching, contributing to significant reduction of content fetching delay. Different from most of the existing literature that concentrating on enhancing the forecast accuracy, we tailor the popularity forecast a...
Uložené v:
| Vydané v: | IEEE internet of things journal Ročník 11; číslo 23; s. 38425 - 38440 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2327-4662, 2327-4662 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Content popularity forecast is a key enabler toward the realization of proactive content caching, contributing to significant reduction of content fetching delay. Different from most of the existing literature that concentrating on enhancing the forecast accuracy, we tailor the popularity forecast and user clustering algorithms for improving the caching performance. Specifically, through analyzing the caching performance drop incurred by inaccurate popularity forecast from the Bayesian perspective, we obtain two critical insights, which trigger the following designs: 1) as the utility of forecast varies according to the content rank, we propose a content-caching-oriented popularity forecast algorithm based on Gaussian process (GP), where more computational resource is allocated to forecast the popularity of prioritized contents and 2) to alleviate the influence of forecast error on the rank of prioritized contents, we propose a content-caching-oriented user clustering algorithm based on the K-means algorithm. Since the involved optimization problem is NP-hard, we propose an iterative algorithm, whose convergence property in terms of region stability is proved, as the objective function may vary before a local minima is reached. Finally, the simulation results demonstrate the superiority of the proposed framework. |
|---|---|
| AbstractList | Content popularity forecast is a key enabler toward the realization of proactive content caching, contributing to significant reduction of content fetching delay. Different from most of the existing literature that concentrating on enhancing the forecast accuracy, we tailor the popularity forecast and user clustering algorithms for improving the caching performance. Specifically, through analyzing the caching performance drop incurred by inaccurate popularity forecast from the Bayesian perspective, we obtain two critical insights, which trigger the following designs: 1) as the utility of forecast varies according to the content rank, we propose a content-caching-oriented popularity forecast algorithm based on Gaussian process (GP), where more computational resource is allocated to forecast the popularity of prioritized contents and 2) to alleviate the influence of forecast error on the rank of prioritized contents, we propose a content-caching-oriented user clustering algorithm based on the K-means algorithm. Since the involved optimization problem is NP-hard, we propose an iterative algorithm, whose convergence property in terms of region stability is proved, as the objective function may vary before a local minima is reached. Finally, the simulation results demonstrate the superiority of the proposed framework. |
| Author | Wang, Yitu Nakachi, Takayuki Chen, Qi Liou, Juinjei Wang, Wei Zhang, Guangchen |
| Author_xml | – sequence: 1 givenname: Yitu orcidid: 0000-0003-4453-5966 surname: Wang fullname: Wang, Yitu organization: School of Electrical and Information Engineering, the Key Laboratory of Intelligent Information and Big Data Processing of Ningxia Province, and the Intelligent Equipment and Precision Measurement Technology Research and Development Group, North Minzu University, Yinchuan, China – sequence: 2 givenname: Qi orcidid: 0009-0000-7982-9329 surname: Chen fullname: Chen, Qi email: chenqi_123@zju.edu.cn organization: School of Artificial Intelligence and Law, Shanghai University of Political Science and Law, Shanghai, China – sequence: 3 givenname: Wei orcidid: 0000-0003-2153-9075 surname: Wang fullname: Wang, Wei organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China – sequence: 4 givenname: Takayuki orcidid: 0000-0002-7970-454X surname: Nakachi fullname: Nakachi, Takayuki organization: Information Technology Center, University of the Ryukyus, Nakagami, Japan – sequence: 5 givenname: Guangchen orcidid: 0000-0002-5561-0661 surname: Zhang fullname: Zhang, Guangchen organization: School of Mathematics and Information Sciences, North Minzu University, Yinchuan, China – sequence: 6 givenname: Juinjei orcidid: 0000-0002-5815-5078 surname: Liou fullname: Liou, Juinjei organization: School of Electrical and Information Engineering, North Minzu University, Yinchuan, China |
| BookMark | eNp9kD1PwzAQhi0EEqX0ByAxRGJO8VecegNFFIoqlaGdLce-gKvgFNsZ-u9J1Q4VA9PdSe9zp3tu0KXvPCB0R_CUECwf3xer9ZRiyqeMc1FIcoFGlNEy50LQy7P-Gk1i3GKMB6wgUozQU9X5BD7llTZfzn_mq-CGEWz20e36VgeX9tm8C2B0TJn2NttECFnV9jFBGIBbdNXoNsLkVMdoM39ZV2_5cvW6qJ6XuaGSp5wZM2uEMAYw4xRmtbVcM0yNKBpMCkvLmjRSAFje1BhqTng9K3GNa8GEtSUbo4fj3l3ofnqISW27PvjhpGKEYclowcmQKo8pE7oYAzTKuKSTG54M2rWKYHUwpg7G1MGYOhkbSPKH3AX3rcP-X-b-yDgAOMsLJqUQ7Bd6mnie |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_1007_s11036_025_02445_w crossref_primary_10_1007_s12083_025_01950_9 |
| Cites_doi | 10.1109/TPDS.2021.3135257 10.1109/TCOMM.2021.3059305 10.1002/widm.53 10.1145/3038912.3052626 10.1016/j.tcs.2010.05.034 10.1109/TNSM.2022.3218081 10.1109/VTC2021-Fall52928.2021.9625449 10.1109/TNNLS.2014.2379930 10.1109/TCCN.2021.3130995 10.1109/TNET.2018.2825460 10.1109/tits.2024.3368413 10.1109/TWC.2020.3027596 10.1109/TCOMM.2023.3277530 10.1109/JIOT.2021.3056084 10.1109/ACCESS.2023.3245803 10.1109/3477.764879 10.1109/INFOCOM42981.2021.9488731 10.1109/MWC.021.2200535 10.1109/WINCOM47513.2019.8942587 10.1109/MCOM.2019.1800155 10.7551/mitpress/3206.001.0001 10.1109/VTCSpring.2017.8108551 10.1109/TNET.2021.3121098 10.1016/j.jnca.2021.103158 10.1109/GLOCOM.2016.7841857 10.1109/TSMC.2023.3281973 10.1007/978-3-319-05359-2_9 10.1109/WD.2017.7918125 10.1109/tcss.2024.3378349 10.1109/TNSM.2021.3053645 10.1007/978-1-4612-1494-6 10.1109/JIOT.2023.3235661 10.1109/JIOT.2021.3097768 10.1109/ACCESS.2020.2972640 10.1109/ACCESS.2019.2927494 10.1109/TMC.2023.3349315 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2024.3446591 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 38440 |
| ExternalDocumentID | 10_1109_JIOT_2024_3446591 10639966 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62301007; U20A20158; 24YJZH023 funderid: 10.13039/501100001809 – fundername: Humanities and Social Sciences Project of the Ministry of Education grantid: 24YJZH023 – fundername: Ningxia Natural Science Foundation for Young Elite Scientists Sponsorship Program funderid: 10.13039/501100004731 – fundername: NingXia Natural Science Foundation for Outstanding Young Scholar, JSPS Grant-in-AID for Scientific Research grantid: 22K04089 – fundername: Key Research and Development Program of Zhejiang grantid: 2022C03078 – fundername: Key R&D projects in the Ningxia Hui Autonomous Region – fundername: Soft Science Program of Shanghai grantid: 23692122200 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-3cc8f66cce0342e8bdd4a302c65f015d27b1f96eed4fb0eb414b870b0b636dd73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001360506300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4662 |
| IngestDate | Mon Jun 30 12:59:14 EDT 2025 Tue Nov 18 22:23:51 EST 2025 Sat Nov 29 01:44:09 EST 2025 Wed Aug 27 03:03:19 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-3cc8f66cce0342e8bdd4a302c65f015d27b1f96eed4fb0eb414b870b0b636dd73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2153-9075 0000-0002-5561-0661 0000-0003-4453-5966 0000-0002-7970-454X 0009-0000-7982-9329 0000-0002-5815-5078 |
| PQID | 3130932541 |
| PQPubID | 2040421 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3130932541 crossref_citationtrail_10_1109_JIOT_2024_3446591 ieee_primary_10639966 crossref_primary_10_1109_JIOT_2024_3446591 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref34 ref15 ref37 ref14 Shi (ref35) ref36 ref31 ref33 ref10 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Khan (ref13) ref24 ref23 Raykar (ref32) ref26 ref25 ref20 ref41 ref22 ref21 Lee (ref11) 2017 Wilson (ref30) ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref9 doi: 10.1109/TPDS.2021.3135257 – ident: ref16 doi: 10.1109/TCOMM.2021.3059305 – ident: ref14 doi: 10.1002/widm.53 – ident: ref39 doi: 10.1145/3038912.3052626 – start-page: 1 volume-title: Proc. Learn. Workshop ident: ref32 article-title: Fast large scale Gaussian process regression using approximate matrix-vector products – ident: ref34 doi: 10.1016/j.tcs.2010.05.034 – ident: ref33 doi: 10.1109/TNSM.2022.3218081 – start-page: 1067 volume-title: Proc. ICML ident: ref30 article-title: Gaussian process kernels for pattern discovery and extrapolation – ident: ref15 doi: 10.1109/VTC2021-Fall52928.2021.9625449 – ident: ref12 doi: 10.1109/TNNLS.2014.2379930 – ident: ref1 doi: 10.1109/TCCN.2021.3130995 – ident: ref23 doi: 10.1109/TNET.2018.2825460 – ident: ref19 doi: 10.1109/tits.2024.3368413 – ident: ref2 doi: 10.1109/TWC.2020.3027596 – ident: ref3 doi: 10.1109/TCOMM.2023.3277530 – ident: ref20 doi: 10.1109/JIOT.2021.3056084 – ident: ref6 doi: 10.1109/ACCESS.2023.3245803 – start-page: 232 volume-title: Proc. IEEE ICADIWT ident: ref13 article-title: DBSCAN: Past, present and future – ident: ref21 doi: 10.1109/3477.764879 – ident: ref26 doi: 10.1109/INFOCOM42981.2021.9488731 – ident: ref4 doi: 10.1109/MWC.021.2200535 – ident: ref7 doi: 10.1109/WINCOM47513.2019.8942587 – ident: ref41 doi: 10.1109/MCOM.2019.1800155 – ident: ref22 doi: 10.7551/mitpress/3206.001.0001 – ident: ref5 doi: 10.1109/VTCSpring.2017.8108551 – ident: ref24 doi: 10.1109/TNET.2021.3121098 – ident: ref18 doi: 10.1016/j.jnca.2021.103158 – ident: ref28 doi: 10.1109/GLOCOM.2016.7841857 – ident: ref31 doi: 10.1109/TSMC.2023.3281973 – ident: ref37 doi: 10.1007/978-3-319-05359-2_9 – ident: ref38 doi: 10.1109/WD.2017.7918125 – ident: ref36 doi: 10.1109/tcss.2024.3378349 – ident: ref25 doi: 10.1109/TNSM.2021.3053645 – ident: ref29 doi: 10.1007/978-1-4612-1494-6 – ident: ref17 doi: 10.1109/JIOT.2023.3235661 – ident: ref40 doi: 10.1109/JIOT.2021.3097768 – ident: ref8 doi: 10.1109/ACCESS.2020.2972640 – ident: ref27 doi: 10.1109/ACCESS.2019.2927494 – start-page: 63 volume-title: Proc. IEEE IITSI ident: ref35 article-title: Research on k-means clustering algorithm: An improved k-means clustering algorithm – year: 2017 ident: ref11 article-title: Deep neural networks as gaussian processes publication-title: arXiv:1711.00165 – ident: ref10 doi: 10.1109/TMC.2023.3349315 |
| SSID | ssj0001105196 |
| Score | 2.3317547 |
| Snippet | Content popularity forecast is a key enabler toward the realization of proactive content caching, contributing to significant reduction of content fetching... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 38425 |
| SubjectTerms | Accuracy Algorithms Caching Clustering Clustering algorithms Complexity theory content caching Gaussian process Gaussian process (GP) Iterative algorithms K-means popularity forecast Prediction algorithms Predictive models Servers Time series analysis |
| Title | Content-Caching-Oriented Popularity Forecast and User Clustering |
| URI | https://ieeexplore.ieee.org/document/10639966 https://www.proquest.com/docview/3130932541 |
| Volume | 11 |
| WOSCitedRecordID | wos001360506300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-oePDi_Jg4ndKDJyGzbbKkuSnDoR62HTbYrTRfIIwqW-ffb17a-YEoeCslr5Rf8vJe8j5-AFc6VRItM7EpVYRlfUeUYppQ29ex4xkzOg5kE2I0yuZzOWmK1UMtjLU2JJ_ZHj6GWL550Wu8KvMajvaU823YFoLXxVqfFyoJeiO8iVwmsbx5ehxP_QkwZT2KbcFk8s32BDKVHztwMCvD1j9_6AD2G_8xuqsn_BC2bHkErQ03Q9So6jHchrZTZUUGdbYkGWNDY-9eRpNA2YWcdRHycupiVUVFaaKZX4zRYLHGzgleoA2z4f108EAatgSiU8kqQrXOHOcaCcBYajNlDCtonGred97mm1SoxEnubSJzKraKJUx5ZVWx4pQbI-gJ7JQvpT2FCIk7XeIsZ5ljUliltBSFNf5dYUXmOhBvcMx100ocGS0WeThSxDJH6HOEPm-g78D1h8hr3Ufjr8FtxPrLwBrmDnQ3s5U3qrbKaYLBXH_OTc5-ETuHPfx6nYTShZ1qubYXsKvfqufV8jKsondidMcA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gV58i9Wqe_AkpO4jzW5uSlGs1uqhhd6WzQuEspV26-83k019IAreliXDLl8ymUnm8QGcy1hwtMxEx4kgNGsbIgSVJNFtGRqWUSVDRzaR9vvZaMSffbG6q4XRWrvkM93CRxfLVxM5x6syq-FoTxlbhlWkzvLlWp9XKhH6I8zHLqOQX953nwb2DBjTVoKNwXj0zfo4OpUfe7AzLLdb__ylbdj0HmRwXU_5Dizpche2FuwMgVfWPbhyjafKinTqfEnyhC2NrYMZPDvSLmStC5CZUxazKihKFQztcgw64zn2TrAC-zC8vRl07ojnSyAy5rQiiZSZYUwiBRiNdSaUokUSxpK1jbX6Kk5FZDizVpEaEWpBIyqsuopQsIQplSYHsFJOSn0IAVJ3mshoRjNDeaqFkDwttLLvCp1mpgHhAsdc-mbiyGkxzt2hIuQ5Qp8j9LmHvgEXHyKvdSeNvwbvI9ZfBtYwN6C5mK3cK9ssTyIM59qTbnT0i9gZrN8NHnt5r9t_OIYN_FKdktKElWo61yewJt-ql9n01K2od-o9ykk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Content-Caching-Oriented+Popularity+Forecast+and+User+Clustering&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Wang%2C+Yitu&rft.au=Chen%2C+Qi&rft.au=Wang%2C+Wei&rft.au=Nakachi%2C+Takayuki&rft.date=2024-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=11&rft.issue=23&rft.spage=38425&rft_id=info:doi/10.1109%2FJIOT.2024.3446591&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |