A RGB-Thermal Image Segmentation Method Based on Parameter Sharing and Attention Fusion for Safe Autonomous Driving
In this paper, we propose a new RGB-thermal image segmentation method based on parameter sharing and attention fusion for safe autonomous driving. An encoder-decoder network structure is adopted. The encoder, which has shared convolution layer parameters and private batch normalization layer paramet...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on intelligent transportation systems Jg. 25; H. 6; S. 5122 - 5137 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1524-9050, 1558-0016 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we propose a new RGB-thermal image segmentation method based on parameter sharing and attention fusion for safe autonomous driving. An encoder-decoder network structure is adopted. The encoder, which has shared convolution layer parameters and private batch normalization layer parameters (parameter sharing scheme), is used to extract features from RGB and thermal images. The extracted features are then fused by spatial and channel attention. The output of each residual block is fused, and the self-learning weight is used to integrate the fusion information of all residual blocks of the same levels. Subsequently, the fused features are integrated through a feature integration (FI) module in the decoder. Cross-entropy supervision of segmentation and edge is performed on the outputs of the decoders. Our proposed method is evaluated and compared with 17 state-of-the-art image segmentation methods, both qualitatively and quantitatively on the MFNet dataset which includes various objects in urban scenes. The results show that the proposed method outperforms previous methods by at least 0.3% and 1.8% in MRecall and MIoU, respectively, providing foundations for the development of autonomous driving technologies for safety enhancement. |
|---|---|
| AbstractList | In this paper, we propose a new RGB-thermal image segmentation method based on parameter sharing and attention fusion for safe autonomous driving. An encoder-decoder network structure is adopted. The encoder, which has shared convolution layer parameters and private batch normalization layer parameters (parameter sharing scheme), is used to extract features from RGB and thermal images. The extracted features are then fused by spatial and channel attention. The output of each residual block is fused, and the self-learning weight is used to integrate the fusion information of all residual blocks of the same levels. Subsequently, the fused features are integrated through a feature integration (FI) module in the decoder. Cross-entropy supervision of segmentation and edge is performed on the outputs of the decoders. Our proposed method is evaluated and compared with 17 state-of-the-art image segmentation methods, both qualitatively and quantitatively on the MFNet dataset which includes various objects in urban scenes. The results show that the proposed method outperforms previous methods by at least 0.3% and 1.8% in MRecall and MIoU, respectively, providing foundations for the development of autonomous driving technologies for safety enhancement. |
| Author | Li, Guofa Ouyang, Delin Lin, Yongjie Luo, Xiao Pi, Dawei Li, Shengbo Eben Li, Shen Qu, Xingda |
| Author_xml | – sequence: 1 givenname: Guofa orcidid: 0000-0002-7889-4695 surname: Li fullname: Li, Guofa email: hanshan198@gmail.com organization: College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, China – sequence: 2 givenname: Yongjie surname: Lin fullname: Lin, Yongjie email: 2991946448@qq.com organization: College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong, China – sequence: 3 givenname: Delin orcidid: 0000-0003-3137-6089 surname: Ouyang fullname: Ouyang, Delin email: ouyangdelin2021@email.szu.edu.cn organization: College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong, China – sequence: 4 givenname: Shen orcidid: 0000-0002-7111-8861 surname: Li fullname: Li, Shen email: sli299@tsinghua.edu.cn organization: School of Civil Engineering, Tsinghua University, Beijing, China – sequence: 5 givenname: Xiao surname: Luo fullname: Luo, Xiao email: luoxiao@faw.com.cn organization: State Key Laboratory of Comprehensive Technology on Automobile Vibration and Noise and Safety Control, FAW Company Ltd., Intelligent Connected Vehicle Development Institute, Changchun, Jilin, China – sequence: 6 givenname: Xingda orcidid: 0000-0003-1764-0357 surname: Qu fullname: Qu, Xingda email: quxd@szu.edu.cn organization: College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong, China – sequence: 7 givenname: Dawei orcidid: 0000-0001-9135-2623 surname: Pi fullname: Pi, Dawei email: pidawei@mail.njust.edu.cn organization: School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 8 givenname: Shengbo Eben orcidid: 0000-0003-4923-3633 surname: Li fullname: Li, Shengbo Eben email: lishbo@tsinghua.edu.cn organization: State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China |
| BookMark | eNp9kFFPwjAQxxuDiYB-ABMfmvg8vK5dxx4BBUkwGsHnpWw3GGErtp2J394u48H44D3cXS__3zX3H5BerWsk5JbBiDFIHjbLzXoUQshHnPOQR3BB-iyKxgEAk722D0WQQARXZGDtwU9FxFif2Al9X0yDzR5NpY50Wakd0jXuKqydcqWu6Qu6vc7pVFnMqX-_KaMqdGjoeq9MWe-oqnM6cc4TrX7e2LYU2gtUgXTSOF3rSjeWPpryywPX5LJQR4s35zokH_Onzew5WL0ulrPJKsjCRLiAbxnkvMjjTEKxlWEsIhlxuZUqgSxUPvvpGPxlhRBbJQEKEYlxhgIywYXkQ3Lf7T0Z_dmgdelBN6b2X6Yc_D4u4yT2qrhTZUZba7BIs7I73RlVHlMGaetw2jqctg6nZ4c9yf6QJ1NWynz_y9x1TImIv_Scxz74D8W0iEE |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_1007_s00530_024_01523_5 crossref_primary_10_1109_TITS_2024_3461468 crossref_primary_10_1109_TITS_2025_3543235 crossref_primary_10_1109_TITS_2025_3549516 crossref_primary_10_3390_e27050526 crossref_primary_10_3390_s24248217 crossref_primary_10_1007_s10489_024_05788_1 crossref_primary_10_1002_cpe_70110 crossref_primary_10_3390_s25051595 |
| Cites_doi | 10.1109/CVPRW.2016.60 10.1016/j.geits.2022.100002 10.1109/CVPR.2015.7298594 10.1109/ICCV.2017.324 10.1162/neco.1997.9.8.1735 10.1007/s10462-019-09784-7 10.1109/TIV.2022.3223728 10.1016/j.inffus.2021.02.008 10.1109/ICCV48922.2021.00986 10.1109/LRA.2022.3155202 10.1109/ICCV.2019.00533 10.1007/978-3-030-58621-8_33 10.1016/j.inffus.2021.06.008 10.1109/TCSVT.2021.3069812 10.1109/TASE.2020.2993143 10.1109/LGRS.2022.3179721 10.5555/3045118.3045167 10.1109/CVPRW56347.2022.00341 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2016.90 10.1007/978-3-319-54181-5_14 10.1109/CVPR.2018.00199 10.1016/j.inffus.2018.02.004 10.1007/978-3-030-01261-8_20 10.1109/TIP.2023.3256762 10.1016/j.inffus.2020.05.002 10.1088/1742-6596/1168/2/022022 10.1016/j.neunet.2018.05.002 10.1016/j.patcog.2021.108468 10.18653/v1/P18-1005 10.1007/s10462-018-9641-3 10.1016/j.patrec.2020.01.011 10.1109/ICIP40778.2020.9191080 10.1016/j.geits.2022.100003 10.1109/TPAMI.2016.2644615 10.1109/ICCV.2017.606 10.15588/1607-3274-2018-1-14 10.1109/TIV.2022.3223131 10.1007/978-3-031-20056-4_2 10.1109/TPAMI.2017.2699184 10.1109/TPAMI.2021.3054719 10.1109/CVPR.2017.660 10.1109/TSMC.2023.3276218 10.1109/TPAMI.2021.3059968 10.1109/TVCG.2016.2598831 10.1109/CVPR.2015.7298965 10.1109/IROS.2017.8206396 10.1007/s10773-019-04177-6 10.1109/JBHI.2023.3305830 10.1016/j.geits.2022.100022 10.1109/LRA.2019.2904733 10.1109/ICIP.2019.8803025 10.1109/TSMC.2023.3283021 10.1016/j.geits.2022.100026 10.1109/TIP.2021.3109518 10.1109/tits.2023.3268063 10.1007/s41095-020-0199-z 10.10.1109/WACV.2018.00163 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1109/TITS.2023.3332350 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 5137 |
| ExternalDocumentID | 10_1109_TITS_2023_3332350 10337777 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF China grantid: 52272421 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 2023CDJXY-023 funderid: 10.13039/501100012226 – fundername: NSF Chongqing grantid: CSTB2023NSCQ-MSX0985 funderid: 10.13039/501100005230 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-3b10d3fd7c60fb627456536b6a90c2aa90fb680152f44ba600f4548ce40c43463 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001121230700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-9050 |
| IngestDate | Mon Jun 30 06:16:43 EDT 2025 Sat Nov 29 06:35:05 EST 2025 Tue Nov 18 22:25:23 EST 2025 Wed Aug 27 02:33:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-3b10d3fd7c60fb627456536b6a90c2aa90fb680152f44ba600f4548ce40c43463 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7889-4695 0000-0002-7111-8861 0000-0003-1764-0357 0000-0001-9135-2623 0000-0003-3137-6089 0000-0003-4923-3633 |
| PQID | 3062736797 |
| PQPubID | 75735 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3062736797 crossref_citationtrail_10_1109_TITS_2023_3332350 crossref_primary_10_1109_TITS_2023_3332350 ieee_primary_10337777 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref56 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref16 ref18 Kendall (ref31) 2015 ref51 ref50 Chen (ref15) 2017 ref45 ref48 ref47 ref42 ref44 ref43 Simonyan (ref12) 2014 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Visin (ref17) 2015 Wang (ref41); 33 ref35 ref34 ref37 ref30 Chung (ref19) 2014 ref33 ref32 Chen (ref46) ref2 ref1 ref39 ref38 Nayak (ref36) 2022; 2020 Santurkar (ref40); 31 ref24 ref68 ref23 ref67 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref27 Zhang (ref28) 2022 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref16 doi: 10.1109/CVPRW.2016.60 – volume: 2020 start-page: 1607 year: 2022 ident: ref36 article-title: A systematic exploration of image fusion: A review publication-title: ICDSMLA – ident: ref63 doi: 10.1016/j.geits.2022.100002 – volume: 33 start-page: 4835 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref41 article-title: Deep multimodal fusion by channel exchanging – ident: ref10 doi: 10.1109/CVPR.2015.7298594 – ident: ref43 doi: 10.1109/ICCV.2017.324 – ident: ref18 doi: 10.1162/neco.1997.9.8.1735 – ident: ref56 doi: 10.1007/s10462-019-09784-7 – ident: ref4 doi: 10.1109/TIV.2022.3223728 – ident: ref8 doi: 10.1016/j.inffus.2021.02.008 – ident: ref21 doi: 10.1109/ICCV48922.2021.00986 – ident: ref1 doi: 10.1109/LRA.2022.3155202 – ident: ref44 doi: 10.1109/ICCV.2019.00533 – ident: ref53 doi: 10.1007/978-3-030-58621-8_33 – ident: ref32 doi: 10.1016/j.inffus.2021.06.008 – ident: ref22 doi: 10.1109/TCSVT.2021.3069812 – ident: ref25 doi: 10.1109/TASE.2020.2993143 – ident: ref27 doi: 10.1109/LGRS.2022.3179721 – year: 2017 ident: ref15 article-title: Rethinking Atrous convolution for semantic image segmentation publication-title: arXiv:1706.05587 – ident: ref39 doi: 10.5555/3045118.3045167 – ident: ref29 doi: 10.1109/CVPRW56347.2022.00341 – ident: ref30 doi: 10.1007/978-3-319-24574-4_28 – year: 2014 ident: ref19 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling publication-title: arXiv:1412.3555 – ident: ref35 doi: 10.1109/CVPR.2016.90 – ident: ref51 doi: 10.1007/978-3-319-54181-5_14 – ident: ref48 doi: 10.1109/CVPR.2018.00199 – ident: ref7 doi: 10.1016/j.inffus.2018.02.004 – ident: ref49 doi: 10.1007/978-3-030-01261-8_20 – ident: ref47 doi: 10.1109/TIP.2023.3256762 – ident: ref34 doi: 10.1016/j.inffus.2020.05.002 – ident: ref55 doi: 10.1088/1742-6596/1168/2/022022 – ident: ref37 doi: 10.1016/j.neunet.2018.05.002 – ident: ref67 doi: 10.1016/j.patcog.2021.108468 – ident: ref57 doi: 10.18653/v1/P18-1005 – ident: ref54 doi: 10.1007/s10462-018-9641-3 – ident: ref58 doi: 10.1016/j.patrec.2020.01.011 – year: 2015 ident: ref31 article-title: Bayesian SegNet: Model uncertainty in deep convolutional encoder–decoder architectures for scene understanding publication-title: arXiv:1511.02680 – ident: ref60 doi: 10.1109/ICIP40778.2020.9191080 – volume: 31 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref40 article-title: How does batch normalization help optimization? – ident: ref66 doi: 10.1016/j.geits.2022.100003 – ident: ref11 doi: 10.1109/TPAMI.2016.2644615 – ident: ref20 doi: 10.1109/ICCV.2017.606 – ident: ref61 doi: 10.15588/1607-3274-2018-1-14 – ident: ref5 doi: 10.1109/TIV.2022.3223131 – ident: ref68 doi: 10.1007/978-3-031-20056-4_2 – year: 2022 ident: ref28 article-title: CMX: Cross-modal fusion for RGB-X semantic segmentation with transformers publication-title: arXiv:2203.04838 – ident: ref14 doi: 10.1109/TPAMI.2017.2699184 – ident: ref45 doi: 10.1109/TPAMI.2021.3054719 – ident: ref13 doi: 10.1109/CVPR.2017.660 – ident: ref2 doi: 10.1109/TSMC.2023.3276218 – ident: ref3 doi: 10.1109/TPAMI.2021.3059968 – ident: ref42 doi: 10.1109/TVCG.2016.2598831 – ident: ref9 doi: 10.1109/CVPR.2015.7298965 – ident: ref23 doi: 10.1109/IROS.2017.8206396 – ident: ref38 doi: 10.1007/s10773-019-04177-6 – ident: ref59 doi: 10.1109/JBHI.2023.3305830 – start-page: 794 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref46 article-title: GradNorm: Gradient normalization for adaptive loss balancing in deep multitask networks – ident: ref64 doi: 10.1016/j.geits.2022.100022 – ident: ref24 doi: 10.1109/LRA.2019.2904733 – ident: ref52 doi: 10.1109/ICIP.2019.8803025 – ident: ref62 doi: 10.1109/TSMC.2023.3283021 – ident: ref65 doi: 10.1016/j.geits.2022.100026 – ident: ref26 doi: 10.1109/TIP.2021.3109518 – ident: ref6 doi: 10.1109/tits.2023.3268063 – year: 2015 ident: ref17 article-title: ReNet: A recurrent neural network based alternative to convolutional networks publication-title: arXiv:1505.00393 – year: 2014 ident: ref12 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 – ident: ref33 doi: 10.1007/s41095-020-0199-z – ident: ref50 doi: 10.10.1109/WACV.2018.00163 |
| SSID | ssj0014511 |
| Score | 2.4932127 |
| Snippet | In this paper, we propose a new RGB-thermal image segmentation method based on parameter sharing and attention fusion for safe autonomous driving. An... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5122 |
| SubjectTerms | Autonomous driving Autonomous vehicles Convolutional neural networks Decoding Encoders-Decoders Feature extraction image fusion Image segmentation Parameters RGB image Semantic segmentation Semantics thermal image Thermal imaging Transformers |
| Title | A RGB-Thermal Image Segmentation Method Based on Parameter Sharing and Attention Fusion for Safe Autonomous Driving |
| URI | https://ieeexplore.ieee.org/document/10337777 https://www.proquest.com/docview/3062736797 |
| Volume | 25 |
| WOSCitedRecordID | wos001121230700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELYAcYDDPniI7rLIB04ruet63Lg-lt0tywGEtkXiFjmOjZAgXbUJv58ZJ0WVViCRQ5REthX5s2fG9sx8jJ0OVKlsNEZEp5zQg0IKh2JPIN7RqGDLMGzJJszV1ej21l53weopFiaEkJzPQp8e01l-OfcNbZXhDAcweG2yTWOyNljr5ciAEm2l5KhKCyuHqyPMgbQ_ZhezaZ94wvsAoIBi7NeUUGJV-U8UJ_0y-fjOP_vEPnSGJB-3yH9mG6HaY7tr6QX32XLM_56fCRwJKH0f-MUjyg4-DXePXbxRxS8TfzQ_Q1VWcny_duSrhV3NKZEzNsJdVfJxXbdOkXzS0OYaR0OXT10MfNzUFBQxb5b81-Ke9iYO2M3k9-znH9GRLAivrK4FFANZQiyNz2QsiIkHTTzIisxZ6ZXDO35FNTZUUevCoX0UNa5yfNDSa9AZHLKtal6FI8Yz6YOFCHEUQceRs0PQjnjMrIbSGttjctXrue8ykBMRxkOeViLS5gRUTkDlHVA99v2lyr82_cZbhQ8ImbWCLSg9drzCNu9m6DIHys8MmbHmyyvVvrIdbF23fmHHbKteNOEb2_ZP9f1ycZIG3zMtItUG |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwELbGhgQ8MAZDFDbww56QXFyfG9ePHaxbxVZNtEh7ixzHRpO2FLUJv587J50qIZDIQ5REdhL5s-_O9t19jJ0MVKlsNEZEp5zQg0IKh2JPIN7RqGDLMGzJJsxsNrq5sdddsHqKhQkhJOez0KfLtJdfLn1DS2U4wgEMHo_YHlFndeFaD5sGlGorpUdVWlg53GxiDqT9tJgu5n1iCu8DgAKKst9SQ4lX5Q9hnDTMZP8__-0Fe96ZknzcYn_AdkL1kj3bSjD4iq3H_Nv5qcC-gPL3jk_vUXrwefhx30UcVfwqMUjzU1RmJcf7a0feWtjYnFI540u4q0o-ruvWLZJPGlpe42jq8rmLgY-bmsIils2af1nd0urEIfs-OVt8vhAdzYLwyupaQDGQJcTS-EzGgrh40MiDrMiclV45PONTVGRDFbUuHFpIUeM8xwctvQadwWu2Wy2r8IbxTPpgIUIcRdBx5OwQtCMmM6uhtMb2mNy0eu67HOREhXGXp7mItDkBlRNQeQdUj318qPKzTcDxr8KHhMxWwRaUHjvaYJt3Y3SdA2VohsxY8_Yv1T6wJxeLq8v8cjr7-o49xS_p1kvsiO3WqyYcs8f-V327Xr1PHfE3cLvYTw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+RGB-Thermal+Image+Segmentation+Method+Based+on+Parameter+Sharing+and+Attention+Fusion+for+Safe+Autonomous+Driving&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Li%2C+Guofa&rft.au=Lin%2C+Yongjie&rft.au=Ouyang%2C+Delin&rft.au=Li%2C+Shen&rft.date=2024-06-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=25&rft.issue=6&rft.spage=5122&rft.epage=5137&rft_id=info:doi/10.1109%2FTITS.2023.3332350&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2023_3332350 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |