FedMDS: An Efficient Model Discrepancy-Aware Semi-asynchronous Clustered Federated Learning Framework

Federated learning (FL) is an emerging distributed machine learning paradigm that protects privacy and tackles the problem of isolated data islands. At present, there are two main communication strategies of FL: synchronous FL and asynchronous FL. The advantages of synchronous FL are that the model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems Jg. 34; H. 3; S. 1 - 14
Hauptverfasser: Zhang, Yu, Liu, Duo, Duan, Moming, Li, Li, Chen, Xianzhang, Ren, Ao, Tan, Yujuan, Wang, Chengliang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1045-9219, 1558-2183
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!