Abnormal Dynamic Recognition of Space Targets from ISAR Image Sequences with SSAE-LSTM Network

Abnormal dynamics awareness of space targets is critical for space surveillance. With the intrinsic range-Doppler projection mechanism, an inverse synthetic aperture radar (ISAR) image sequence naturally has crucial potential for abnormal dynamics interpretation on uncooperative targets. In this pap...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 61; s. 1
Hlavní autoři: Duan, Jia, Ma, Yan, Zhang, Lei, Xie, Pengfei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Abnormal dynamics awareness of space targets is critical for space surveillance. With the intrinsic range-Doppler projection mechanism, an inverse synthetic aperture radar (ISAR) image sequence naturally has crucial potential for abnormal dynamics interpretation on uncooperative targets. In this paper, we develop an automated deep neural network architecture for abnormal dynamic recognition of space targets from ISAR image sequences. With the accommodation of the stacked sparse autoencoder (SSAE) network joint sparsity constraint, the geometrical feature flow of an ISAR image sequence is learned to represent the target dynamics concisely. Then, the abnormal dynamic recognition is turned into a sequential classification task by exploiting the encoded feature flow through the long-short time memory (LSTM) network. Extensive experiment results confirm the superiority of the proposal in both precision and efficiency aspects.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2023.3264995