Hybrid Feature Reduction Using PCC-Stacked Autoencoders for Gold/Oil Prices Forecasting under COVID-19 Pandemic

The financial markets have been influenced by the emerging spread of Coronavirus disease, COVID-19. The oil, and gold as well have experienced a downward trend due to the increased rate in the number of confirmed COVID-19 cases. Lately, the published COVID data comprised new variables that may influ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics (Basel) Ročník 11; číslo 7; s. 991
Hlavní autoři: Samee, Nagwan Abdel, Atteia, Ghada, Alkanhel, Reem, Alhussan, Amel Ali, AlEisa, Hussah Nasser
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.04.2022
ISSN:2079-9292, 2079-9292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The financial markets have been influenced by the emerging spread of Coronavirus disease, COVID-19. The oil, and gold as well have experienced a downward trend due to the increased rate in the number of confirmed COVID-19 cases. Lately, the published COVID data comprised new variables that may influence the accuracy of the oil/gold prices forecasting models including the Stringency index, Reproduction rate, Positive Rate, and Vaccinations. In this study, Deep Autoencoders are introduced and combined with the well-known approach: Pearson Correlation Coefficient, PCC, analysis in selecting the key features that affect the accuracy of the forecasting models of gold and oil prices with respect to COVID-19 pandemic. We have utilized a hybrid approach of PCC along with a 2-Stage Stacked Autoencoder, SA, to extract the latent features which are then submitted to Neural Network, NN, regression model. The NN regressor has been trained using the Bayesian Regularization-backpropagation algorithm which provides a good generalization for small noisy datasets. The hybrid approach has yielded the minimum MSE values of 8.97 × 10−3 and 5.356 × 10−2 on the oil/gold validation set, respectively. Compared to the existing approaches, the proposed approach has outperformed the ARIMA, ML based regression models in forecasting the oil/gold prices. In addition, the introduced framework has yielded lower Mean Absolute Error, MAE, than the Recurrent Neural Network, RNN, and the Principal Component Analysis, PCA, for dimension reduction. The retrieved results showed that the hybrid method produced more robust features by considering the relationship between the input features.
AbstractList The financial markets have been influenced by the emerging spread of Coronavirus disease, COVID-19. The oil, and gold as well have experienced a downward trend due to the increased rate in the number of confirmed COVID-19 cases. Lately, the published COVID data comprised new variables that may influence the accuracy of the oil/gold prices forecasting models including the Stringency index, Reproduction rate, Positive Rate, and Vaccinations. In this study, Deep Autoencoders are introduced and combined with the well-known approach: Pearson Correlation Coefficient, PCC, analysis in selecting the key features that affect the accuracy of the forecasting models of gold and oil prices with respect to COVID-19 pandemic. We have utilized a hybrid approach of PCC along with a 2-Stage Stacked Autoencoder, SA, to extract the latent features which are then submitted to Neural Network, NN, regression model. The NN regressor has been trained using the Bayesian Regularization-backpropagation algorithm which provides a good generalization for small noisy datasets. The hybrid approach has yielded the minimum MSE values of 8.97 × 10−3 and 5.356 × 10−2 on the oil/gold validation set, respectively. Compared to the existing approaches, the proposed approach has outperformed the ARIMA, ML based regression models in forecasting the oil/gold prices. In addition, the introduced framework has yielded lower Mean Absolute Error, MAE, than the Recurrent Neural Network, RNN, and the Principal Component Analysis, PCA, for dimension reduction. The retrieved results showed that the hybrid method produced more robust features by considering the relationship between the input features.
Author Alkanhel, Reem
Samee, Nagwan Abdel
Alhussan, Amel Ali
Atteia, Ghada
AlEisa, Hussah Nasser
Author_xml – sequence: 1
  givenname: Nagwan Abdel
  orcidid: 0000-0001-5957-1383
  surname: Samee
  fullname: Samee, Nagwan Abdel
– sequence: 2
  givenname: Ghada
  orcidid: 0000-0002-5462-595X
  surname: Atteia
  fullname: Atteia, Ghada
– sequence: 3
  givenname: Reem
  orcidid: 0000-0001-6395-4723
  surname: Alkanhel
  fullname: Alkanhel, Reem
– sequence: 4
  givenname: Amel Ali
  orcidid: 0000-0001-7530-7961
  surname: Alhussan
  fullname: Alhussan, Amel Ali
– sequence: 5
  givenname: Hussah Nasser
  surname: AlEisa
  fullname: AlEisa, Hussah Nasser
BookMark eNp9kMtOwzAQRS1UJErpF7DxD4T60Sjxsgr0IVVqBZRtZI8nyJDGyHYW_XtSwQIhxGzujDTnLs41GXW-Q0JuObuTUrEZtggp-M5B5JwVTCl-QcaCFSpTQonRj_2KTGN8Y8MoLkvJxsSvTyY4S5eoUx-QPqLtITnf0UN03SvdV1X2lDS8o6WLPnnswFsMkTY-0JVv7WznWroPDjDSpQ8IOqYz2HfDG612L5v7jCu618N9dHBDLhvdRpx-54Qclg_P1Trb7labarHNQKh5yiTn-Ry0QilybgprTCPLvJSNKbTUqikgFxpkXmiBaEq0vERjBArMS24MyAmRX70QfIwBm_ojuKMOp5qz-qyt_kPbQKlfFLikzzpS0K79l_0EAcl6dg
CitedBy_id crossref_primary_10_3390_healthcare10122340
crossref_primary_10_3390_s22134938
crossref_primary_10_3390_diagnostics13101700
crossref_primary_10_1007_s40031_024_01070_7
crossref_primary_10_3390_axioms11100499
crossref_primary_10_3390_math10183274
crossref_primary_10_3390_s22155520
crossref_primary_10_57197_JDR_2023_0029
Cites_doi 10.2307/3003046
10.1016/j.oceaneng.2017.12.044
10.1108/EJMBE-10-2017-016
10.2139/ssrn.2275428
10.1016/j.physa.2018.09.120
10.1016/j.eswa.2017.05.024
10.2139/ssrn.3428095
10.1016/B978-0-12-373695-6.00001-6
10.1016/j.resourpol.2017.08.006
10.1016/j.measurement.2021.110085
10.1007/s12652-020-01682-z
10.1007/s40745-020-00256-2
10.1111/j.1540-6288.2010.00244.x
10.3390/en13102440
10.1016/j.eneco.2020.104790
10.1016/j.energy.2018.12.016
10.1016/S0042-6989(97)00169-7
10.1016/j.resourpol.2021.102217
10.5547/ISSN0195-6574-EJ-Vol27-No4-4
10.2307/1885568
10.1016/j.aasri.2014.05.013
10.3390/e23101251
10.1007/s42979-021-00724-3
10.1016/j.eneco.2015.02.018
10.1016/j.econlet.2020.109283
10.1080/14697688.2019.1633014
10.1162/089976600300015015
10.1109/EMBC.2018.8513683
10.1287/mnsc.2013.1756
10.1016/j.eswa.2018.03.002
10.1155/2021/7778605
10.1109/IJCNN.2010.5596602
10.1016/j.enpol.2009.08.020
10.12973/ejmste/77926
10.1016/j.irfa.2020.101496
10.1016/j.ijsu.2020.04.018
10.1016/j.energy.2014.12.074
10.1016/j.resourpol.2021.102061
10.1016/j.procs.2017.11.373
10.1007/978-3-642-38667-1_27
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.3390/electronics11070991
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10_3390_electronics11070991
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
ID FETCH-LOGICAL-c294t-31154ca9e3251b7dbbf38583fb7a3a9f7c52ac357a2eeb8ed18ebb2e2e581bbc3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000781289000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sat Nov 29 07:20:17 EST 2025
Tue Nov 18 21:02:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-31154ca9e3251b7dbbf38583fb7a3a9f7c52ac357a2eeb8ed18ebb2e2e581bbc3
ORCID 0000-0001-6395-4723
0000-0001-7530-7961
0000-0001-5957-1383
0000-0002-5462-595X
OpenAccessLink https://www.mdpi.com/2079-9292/11/7/991/pdf?version=1648176495
ParticipantIDs crossref_primary_10_3390_electronics11070991
crossref_citationtrail_10_3390_electronics11070991
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Electronics (Basel)
PublicationYear 2022
References Cen (ref_17) 2019; 169
Baur (ref_4) 2010; 45
Moshiri (ref_12) 2006; 27
ref_11
Samuelson (ref_28) 1973; 4
Sharif (ref_8) 2020; 70
ref_19
Arai (ref_31) 2021; 12
Olshausen (ref_45) 1997; 37
ref_15
Yan (ref_9) 2021; 2021
ref_25
ref_24
Wu (ref_16) 2019; 516
Nicola (ref_6) 2020; 78
ref_22
Atteia (ref_29) 2021; 12
Sariev (ref_23) 2020; 20
Weng (ref_49) 2020; 11
He (ref_48) 2018; 27
Oh (ref_33) 2018; 150
ref_26
SenGupta (ref_38) 2021; 8
Shamshirband (ref_27) 2020; 14
Li (ref_34) 2021; 186
Smirnov (ref_46) 2014; 6
Soytas (ref_3) 2009; 37
ref_32
Zhao (ref_37) 2014; 211
ref_30
Gers (ref_39) 2000; 12
Kim (ref_18) 2018; 103
Singleton (ref_1) 2014; 60
Chen (ref_21) 2017; 122
Zhang (ref_13) 2015; 49
Vahidnia (ref_51) 2021; 2
Mensi (ref_5) 2021; 73
Wang (ref_20) 2020; 91
Atri (ref_47) 2021; 72
Bakas (ref_7) 2020; 193
Kristjanpoller (ref_14) 2017; 84
Bernanke (ref_2) 1983; 98
ref_44
ref_43
ref_42
He (ref_50) 2017; 54
ref_41
ref_40
Yu (ref_36) 2017; 13
Jabeur (ref_52) 2021; 937
Arfaoui (ref_10) 2017; 26
Hu (ref_35) 2015; 81
References_xml – volume: 4
  start-page: 369
  year: 1973
  ident: ref_28
  article-title: Proof That Properly Discounted Present Values of Assets Vibrate Randomly
  publication-title: Bell J. Econ. Manag. Sci.
  doi: 10.2307/3003046
– volume: 150
  start-page: 48
  year: 2018
  ident: ref_33
  article-title: Real-Time Forecasting of Wave Heights Using EOF—Wavelet—Neural Network Hybrid Model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.12.044
– volume: 26
  start-page: 278
  year: 2017
  ident: ref_10
  article-title: Oil, Gold, US Dollar and Stock Market Interdependencies: A Global Analytical Insight
  publication-title: Eur. J. Manag. Bus. Econ.
  doi: 10.1108/EJMBE-10-2017-016
– ident: ref_22
  doi: 10.2139/ssrn.2275428
– volume: 516
  start-page: 114
  year: 2019
  ident: ref_16
  article-title: Improved EEMD-Based Crude Oil Price Forecasting Using LSTM Networks
  publication-title: Phys. Stat. Mech. Appl.
  doi: 10.1016/j.physa.2018.09.120
– volume: 84
  start-page: 290
  year: 2017
  ident: ref_14
  article-title: Volatility of Main Metals Forecasted by a Hybrid ANN-GARCH Model with Regressors
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.05.024
– ident: ref_19
  doi: 10.2139/ssrn.3428095
– ident: ref_32
  doi: 10.1016/B978-0-12-373695-6.00001-6
– volume: 54
  start-page: 9
  year: 2017
  ident: ref_50
  article-title: Price Forecasting in the Precious Metal Market: A Multivariate EMD Denoising Approach
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2017.08.006
– ident: ref_42
– volume: 186
  start-page: 110085
  year: 2021
  ident: ref_34
  article-title: A Missing Sensor Measurement Data Reconstruction Framework Powered by Multi-Task Gaussian Process Regression for Dam Structural Health Monitoring Systems
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110085
– volume: 11
  start-page: 4101
  year: 2020
  ident: ref_49
  article-title: Gold Price Forecasting Research Based on an Improved Online Extreme Learning Machine Algorithm
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-01682-z
– volume: 8
  start-page: 39
  year: 2021
  ident: ref_38
  article-title: Refinements of Barndorff-Nielsen and Shephard Model: An Analysis of Crude Oil Price with Machine Learning
  publication-title: Ann. Data Sci.
  doi: 10.1007/s40745-020-00256-2
– volume: 27
  start-page: 25
  year: 2018
  ident: ref_48
  article-title: Crude Oil Prices Forecasting: Time Series vs. SVR Models
  publication-title: J. Int. Technol. Inf. Manag.
– volume: 14
  start-page: 805
  year: 2020
  ident: ref_27
  article-title: Prediction of Significant Wave Height; Comparison between Nested Grid Numerical Model, and Machine Learning Models of Artificial Neural Networks, Extreme Learning and Support Vector Machines
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 45
  start-page: 217
  year: 2010
  ident: ref_4
  article-title: Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold
  publication-title: Financ. Rev.
  doi: 10.1111/j.1540-6288.2010.00244.x
– ident: ref_11
  doi: 10.3390/en13102440
– ident: ref_41
– volume: 91
  start-page: 104790
  year: 2020
  ident: ref_20
  article-title: A Multi-Granularity Heterogeneous Combination Approach to Crude Oil Price Forecasting
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2020.104790
– volume: 169
  start-page: 160
  year: 2019
  ident: ref_17
  article-title: Crude Oil Price Prediction Model with Long Short Term Memory Deep Learning Based on Prior Knowledge Data Transfer
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.016
– volume: 12
  start-page: 310
  year: 2021
  ident: ref_31
  article-title: Combined Non-Parametric and Parametric Classification Method Depending on Normality of PDF of Training Samples
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 37
  start-page: 3311
  year: 1997
  ident: ref_45
  article-title: Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1?
  publication-title: Vis. Res.
  doi: 10.1016/S0042-6989(97)00169-7
– volume: 73
  start-page: 102217
  year: 2021
  ident: ref_5
  article-title: Price-Switching Spillovers between Gold, Oil, and Stock Markets: Evidence from the USA and China during the COVID-19 Pandemic
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2021.102217
– volume: 27
  start-page: 81
  year: 2006
  ident: ref_12
  article-title: Forecasting Nonlinear Crude Oil Futures Prices
  publication-title: Energy J.
  doi: 10.5547/ISSN0195-6574-EJ-Vol27-No4-4
– volume: 98
  start-page: 85
  year: 1983
  ident: ref_2
  article-title: Irreversibility, Uncertainty, and Cyclical Investment
  publication-title: Q. J. Econ.
  doi: 10.2307/1885568
– volume: 12
  start-page: 647
  year: 2021
  ident: ref_29
  article-title: Evaluation of Using Parametric and Non-Parametric Machine Learning Algorithms for COVID-19 Forecasting
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: ref_30
– volume: 6
  start-page: 89
  year: 2014
  ident: ref_46
  article-title: Comparison of Regularization Methods for ImageNet Classification with Deep Convolutional Neural Networks
  publication-title: AASRI Procedia
  doi: 10.1016/j.aasri.2014.05.013
– ident: ref_24
– ident: ref_26
  doi: 10.3390/e23101251
– volume: 2
  start-page: 335
  year: 2021
  ident: ref_51
  article-title: A Deep Learning-Based Method for Forecasting Gold Price with Respect to Pandemics
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00724-3
– volume: 49
  start-page: 649
  year: 2015
  ident: ref_13
  article-title: A Novel Hybrid Method for Crude Oil Price Forecasting
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2015.02.018
– ident: ref_40
– volume: 193
  start-page: 109283
  year: 2020
  ident: ref_7
  article-title: Commodity Price Volatility and the Economic Uncertainty of Pandemics
  publication-title: Econ. Lett.
  doi: 10.1016/j.econlet.2020.109283
– ident: ref_44
– volume: 20
  start-page: 311
  year: 2020
  ident: ref_23
  article-title: Bayesian Regularized Artificial Neural Networks for the Estimation of the Probability of Default
  publication-title: Quant. Financ.
  doi: 10.1080/14697688.2019.1633014
– volume: 12
  start-page: 2451
  year: 2000
  ident: ref_39
  article-title: Learning to Forget: Continual Prediction with LSTM
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015015
– ident: ref_25
  doi: 10.1109/EMBC.2018.8513683
– volume: 60
  start-page: 300
  year: 2014
  ident: ref_1
  article-title: Investor Flows and the 2008 Boom/Bust in Oil Prices
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.2013.1756
– volume: 103
  start-page: 25
  year: 2018
  ident: ref_18
  article-title: Forecasting the Volatility of Stock Price Index: A Hybrid Model Integrating LSTM with Multiple GARCH-Type Models
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.03.002
– volume: 2021
  start-page: 1
  year: 2021
  ident: ref_9
  article-title: Selection of Machine Learning Models for Oil Price Forecasting: Based on the Dual Attributes of Oil
  publication-title: Discret. Dyn. Nat. Soc.
  doi: 10.1155/2021/7778605
– ident: ref_15
  doi: 10.1109/IJCNN.2010.5596602
– volume: 37
  start-page: 5557
  year: 2009
  ident: ref_3
  article-title: World Oil Prices, Precious Metal Prices and Macroeconomy in Turkey
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.08.020
– volume: 937
  start-page: 1
  year: 2021
  ident: ref_52
  article-title: Forecasting Gold Price with the XGBoost Algorithm and SHAP Interaction Values
  publication-title: Ann. Oper. Res.
– volume: 13
  start-page: 7893
  year: 2017
  ident: ref_36
  article-title: Assessing Potentiality of Support Vector Machine Method in Crude Oil Price Forecasting
  publication-title: Eurasia J. Math. Sci. Technol. Educ.
  doi: 10.12973/ejmste/77926
– volume: 70
  start-page: 101496
  year: 2020
  ident: ref_8
  article-title: COVID-19 Pandemic, Oil Prices, Stock Market, Geopolitical Risk and Policy Uncertainty Nexus in the US Economy: Fresh Evidence from the Wavelet-Based Approach
  publication-title: Int. Rev. Financ. Anal.
  doi: 10.1016/j.irfa.2020.101496
– volume: 78
  start-page: 185
  year: 2020
  ident: ref_6
  article-title: The Socio-Economic Implications of the Coronavirus Pandemic (COVID-19): A Review
  publication-title: Int. J. Surg.
  doi: 10.1016/j.ijsu.2020.04.018
– ident: ref_43
– volume: 81
  start-page: 563
  year: 2015
  ident: ref_35
  article-title: A Hybrid Technique for Short-Term Wind Speed Prediction
  publication-title: Energy
  doi: 10.1016/j.energy.2014.12.074
– volume: 72
  start-page: 102061
  year: 2021
  ident: ref_47
  article-title: imen The Impact of COVID-19 News, Panic and Media Coverage on the Oil and Gold Prices: An ARDL Approach
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2021.102061
– volume: 122
  start-page: 300
  year: 2017
  ident: ref_21
  article-title: Forecasting Crude Oil Prices: A Deep Learning Based Model
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.11.373
– volume: 211
  start-page: 275
  year: 2014
  ident: ref_37
  article-title: Forecasting Crude Oil Price with an Autoregressive Integrated Moving Average (ARIMA) Model
  publication-title: Adv. Intell. Syst. Comput.
  doi: 10.1007/978-3-642-38667-1_27
SSID ssj0000913830
Score 2.2902215
Snippet The financial markets have been influenced by the emerging spread of Coronavirus disease, COVID-19. The oil, and gold as well have experienced a downward trend...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 991
Title Hybrid Feature Reduction Using PCC-Stacked Autoencoders for Gold/Oil Prices Forecasting under COVID-19 Pandemic
Volume 11
WOSCitedRecordID wos000781289000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwgEOiKcoUOQDtxA1Gyfr-Bi2Lw5sq1JQbyvbcbor0my1yZZy4Wfx-zq283CrVUUPXKLI8lrKzpfxzOTzfAh9pFEgVcwhN6FB5EeESh-iIuIHAl4vMQrzWEojNkEnk-T0lB0NBn_bszCXBS3L5OqKXfxXU8MYGFsfnb2HubtFYQDuwehwBbPD9Z8Mf_BbH8LydGynPw4c696sxsiWHXA0HvsQYcLLm3npql7oRpaazGz4hvtGQ3rvcF54Rg--8rR0p-SVIUfr82ZLb3z448uOP2QQfJaGWn-juN-p6phq7mfYIwun2PCNn1viz4Sf_QLPkopMdRSPtK6Vpe7uz3hfKEiLn7ycWTLBsWoqzWZ8tqoqW79NzxUgrZi7NQxIf3vqi3F1YUCZD4Ga9ctqzVjrq4cOJqnjeJnV_Lq9IRDCNIOylxSqdL4bNLNvtt--tS12ZEVIk_Qy0zWLPEAPQxozTSX8-qev7eleq4mRuekewja80utsr1nHCYqc6ObkGXrapCU4tXB6jgaqfIGeOM0qX6KFBRZugIU7YGEDLOwAC7vAwgAsrIG1DbDCFlbYgRU2sMItrHALq1fo-97uyfjAb-Q6fBmyqPZ136ZIcqYIxMyCZkLk-qszyQXlhLOcyjjkksSUh0qJRGXDRAkRqlDFkDsJSV6jjXJRqjcI5yOWRcOcsVhkUU6ooIoGkjKqRlTkNNpEYft_TWXTy15LqhTTO4y1iT51P7qwrVzumv72ftPfocc9st-jjXq5Ulvokbys59Xyg8HHNR5HnCY
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Feature+Reduction+Using+PCC-Stacked+Autoencoders+for+Gold%2FOil+Prices+Forecasting+under+COVID-19+Pandemic&rft.jtitle=Electronics+%28Basel%29&rft.au=Samee%2C+Nagwan+Abdel&rft.au=Atteia%2C+Ghada&rft.au=Alkanhel%2C+Reem&rft.au=Alhussan%2C+Amel+Ali&rft.date=2022-04-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=7&rft.spage=991&rft_id=info:doi/10.3390%2Felectronics11070991&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics11070991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon