LLM4TAP: LLM-Enhanced TAP Rule Recommendation
Trigger-action programming (TAP) is an Internet of Things (IoT) paradigm that enables nonprofessional end-users to automate smart devices by formulating rules, such as "IF you leave home, THEN turn off lights." As the number of possible rules increases, manually browsing these rules become...
Uloženo v:
| Vydáno v: | IEEE internet of things journal Ročník 12; číslo 10; s. 13157 - 13169 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
15.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2327-4662, 2327-4662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Trigger-action programming (TAP) is an Internet of Things (IoT) paradigm that enables nonprofessional end-users to automate smart devices by formulating rules, such as "IF you leave home, THEN turn off lights." As the number of possible rules increases, manually browsing these rules becomes increasingly time-consuming for users. Recently, graph-based recommendation systems have shown promise in automatically suggesting rules, yet they face two issues. First, these studies struggle to identify and differentiate users' demands (e.g., turning off lights) and intentions (e.g., energy saving). Second, they overlook the issue of sparse user-rule interactions. In this article, we propose LLM4TAP, a large language model (LLM) enhanced TAP rule recommendation framework, to address these issues. Prior to LLM4TAP, a user-rule graph is constructed to represent the interactions between users and rules. Within LLM4TAP, singular value decomposition is first employed to generate an augmented graph, strengthening global structural relationships between users and rules. Next, the reasoning capabilities of LLMs are utilized to infer users' demands and intentions from the textual descriptions of rules and user-rule interactions, producing representations of these inferred demands and intentions. Finally, a dual representation alignment method is introduced, integrating user demands and intentions derived from LLMs with the global structural information from the augmentation graph within a contrastive learning framework to enhance representation performance. Extensive experiments demonstrate the effectiveness of LLM4TAP, achieving the maximum improvements of 8.96% and 4.72% over the strongest compared methods on the IFTTT and Wyze datasets, respectively. |
|---|---|
| AbstractList | Trigger-action programming (TAP) is an Internet of Things (IoT) paradigm that enables nonprofessional end-users to automate smart devices by formulating rules, such as “IF you leave home, THEN turn off lights.” As the number of possible rules increases, manually browsing these rules becomes increasingly time-consuming for users. Recently, graph-based recommendation systems have shown promise in automatically suggesting rules, yet they face two issues. First, these studies struggle to identify and differentiate users’ demands (e.g., turning off lights) and intentions (e.g., energy saving). Second, they overlook the issue of sparse user-rule interactions. In this article, we propose LLM4TAP, a large language model (LLM) enhanced TAP rule recommendation framework, to address these issues. Prior to LLM4TAP, a user-rule graph is constructed to represent the interactions between users and rules. Within LLM4TAP, singular value decomposition is first employed to generate an augmented graph, strengthening global structural relationships between users and rules. Next, the reasoning capabilities of LLMs are utilized to infer users’ demands and intentions from the textual descriptions of rules and user-rule interactions, producing representations of these inferred demands and intentions. Finally, a dual representation alignment method is introduced, integrating user demands and intentions derived from LLMs with the global structural information from the augmentation graph within a contrastive learning framework to enhance representation performance. Extensive experiments demonstrate the effectiveness of LLM4TAP, achieving the maximum improvements of 8.96% and 4.72% over the strongest compared methods on the IFTTT and Wyze datasets, respectively. |
| Author | Hu, Liang Xiong, Xingbo Wu, Gang Hu, Yuxiao Wang, Feng |
| Author_xml | – sequence: 1 givenname: Gang orcidid: 0000-0001-8721-6995 surname: Wu fullname: Wu, Gang email: wugang17@mails.jlu.edu.cn organization: College of Computer Science and Technology, Jilin University, Changchun, China – sequence: 2 givenname: Liang orcidid: 0000-0002-6077-1873 surname: Hu fullname: Hu, Liang organization: College of Computer Science and Technology, Jilin University, Changchun, China – sequence: 3 givenname: Yuxiao surname: Hu fullname: Hu, Yuxiao organization: College of Computer Science and Technology, Jilin University, Changchun, China – sequence: 4 givenname: Xingbo surname: Xiong fullname: Xiong, Xingbo email: xxb_1967@163.com organization: College of Computer Science and Technology, Changchun University, Changchun, China – sequence: 5 givenname: Feng orcidid: 0000-0002-0732-7343 surname: Wang fullname: Wang, Feng email: wangfeng12@mails.jlu.edu.cn organization: College of Computer Science and Technology, Jilin University, Changchun, China |
| BookMark | eNp9kEtPAjEUhRuDiYj8ABMXk7ge7Iu2444QVMwYDMF108edOAQ62BkW_nuLsCAuXN2Tm_Pdx7lGvdAEQOiW4BEhuHh4nS9WI4rpeMTGjBZSXqA-ZVTmXAjaO9NXaNi2a4xxwsakEH2Ul-UbX03eH7Mk8ln4NMGBz1InW-43kC3BNdstBG-6ugk36LIymxaGpzpAH0-z1fQlLxfP8-mkzB0teJdT4FY65T1YV4DzlHhmrePAsbXceyYlAcOVddhUWLECV4oojy046iXhbIDuj3N3sfnaQ9vpdbOPIa3ULP1JlBAKJ5c8ulxs2jZCpV3d_d7ZRVNvNMH6EI8-xKMP8ehTPIkkf8hdrLcmfv_L3B2ZGgDO_EoKIhj7ATfacEY |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_1109_JIOT_2025_3579920 crossref_primary_10_1007_s10462_025_11320_9 |
| Cites_doi | 10.1145/3616855.3635853 10.1109/TMC.2024.3350886 10.1145/3589334.3645682 10.1145/3576842.3582328 10.3390/s24186151 10.1145/3627673.3679564 10.1162/tacl_a_00619 10.1109/JIOT.2021.3103320 10.1145/3589334.3645458 10.1145/3344211 10.1109/TII.2021.3092774 10.1145/3404835.3462862 10.1145/3539618.3591723 10.1145/3534678.3539253 10.1145/3447264 10.1145/3488560.3498527 10.1609/aaai.v33i01.33012547 10.1109/MWC.013.2300485 10.1109/JSAC.2024.3459029 10.1145/3696662 10.26599/TST.2023.9010071 10.1016/j.ijhcs.2018.12.008 10.1016/j.asoc.2024.112163 10.1109/TCOMM.2023.3240697 10.1145/3678585 10.1145/3539618.3591665 10.1007/s00779-024-01825-5 10.1109/tmc.2024.3502685 10.1016/j.eswa.2023.121065 10.1145/3131365.3131369 10.1109/TITS.2024.3418864 10.1145/3637528.3671984 10.1145/3485447.3512104 10.1145/3524610.3527922 10.1145/3604915.3608857 10.1145/3397271.3401063 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2025.3532977 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 13169 |
| ExternalDocumentID | 10_1109_JIOT_2025_3532977 10876163 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Science and Technology Development Plan of Jilin Province of China grantid: 20220101115JC funderid: 10.13039/100016694 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-2e4b7c8ddebc9ecd21d3bbc4e40bb4dd3771ea48bc0af08390f818d0bec2d7143 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001485409200032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4662 |
| IngestDate | Thu Nov 20 16:51:35 EST 2025 Sat Nov 29 07:58:11 EST 2025 Tue Nov 18 20:51:55 EST 2025 Wed Aug 27 01:53:09 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-2e4b7c8ddebc9ecd21d3bbc4e40bb4dd3771ea48bc0af08390f818d0bec2d7143 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0732-7343 0000-0001-8721-6995 0000-0002-6077-1873 |
| PQID | 3202186680 |
| PQPubID | 2040421 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_JIOT_2025_3532977 ieee_primary_10876163 crossref_citationtrail_10_1109_JIOT_2025_3532977 proquest_journals_3202186680 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-15 |
| PublicationDateYYYYMMDD | 2025-05-15 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref30 ref11 ref33 ref32 ref1 ref16 Kingma (ref39) 2017 ref19 Cai (ref10) ref18 Rendle (ref37) Wang (ref17) 2024 Wang (ref2) 2024 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 Asl (ref31) ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Kamani (ref40) Oord (ref38) 2019 |
| References_xml | – ident: ref30 doi: 10.1145/3616855.3635853 – ident: ref16 doi: 10.1109/TMC.2024.3350886 – ident: ref28 doi: 10.1145/3589334.3645682 – ident: ref7 doi: 10.1145/3576842.3582328 – ident: ref41 doi: 10.3390/s24186151 – ident: ref33 doi: 10.1145/3627673.3679564 – ident: ref27 doi: 10.1162/tacl_a_00619 – ident: ref1 doi: 10.1109/JIOT.2021.3103320 – ident: ref29 doi: 10.1145/3589334.3645458 – year: 2019 ident: ref38 article-title: Representation learning with contrastive predictive coding publication-title: arXiv:1807.03748 – ident: ref22 doi: 10.1145/3344211 – ident: ref23 doi: 10.1109/TII.2021.3092774 – ident: ref34 doi: 10.1145/3404835.3462862 – ident: ref43 doi: 10.1145/3539618.3591723 – ident: ref42 doi: 10.1145/3534678.3539253 – ident: ref6 doi: 10.1145/3447264 – ident: ref35 doi: 10.1145/3488560.3498527 – ident: ref4 doi: 10.1609/aaai.v33i01.33012547 – ident: ref18 doi: 10.1109/MWC.013.2300485 – ident: ref14 doi: 10.1109/JSAC.2024.3459029 – ident: ref44 doi: 10.1145/3696662 – year: 2024 ident: ref2 article-title: Optimizing 6G integrated sensing and communications (ISAC) via expert networks publication-title: arXiv:2406.00408 – ident: ref32 doi: 10.26599/TST.2023.9010071 – start-page: 452 volume-title: Proc. 25th Conf. Uncertain. Artif. Intell. ident: ref37 article-title: BPR: Bayesian personalized ranking from implicit feedback – start-page: 1 volume-title: Proc. 37th Adv. Neural Inf. Process. Syst. ident: ref40 article-title: Wyze rule: Federated rule Dataset for rule recommendation benchmarking – ident: ref8 doi: 10.1016/j.ijhcs.2018.12.008 – year: 2017 ident: ref39 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref11 doi: 10.1016/j.asoc.2024.112163 – year: 2024 ident: ref17 article-title: Generative AI based secure wireless sensing for ISAC networks publication-title: arXiv:2408.11398 – ident: ref15 doi: 10.1109/TCOMM.2023.3240697 – ident: ref20 doi: 10.1145/3678585 – ident: ref12 doi: 10.1145/3539618.3591665 – start-page: 1 volume-title: Proc. 11th Int. Conf. Learn. Represent. ident: ref10 article-title: LightGCL: Simple yet effective graph contrastive learning for recommendation – ident: ref21 doi: 10.1007/s00779-024-01825-5 – ident: ref19 doi: 10.1109/tmc.2024.3502685 – ident: ref24 doi: 10.1016/j.eswa.2023.121065 – start-page: 3795 volume-title: Proc. Find. Assoc. Comput. Linguist. NAACL ident: ref31 article-title: RobustSentEmbed: Robust sentence embeddings using adversarial self-supervised contrastive learning – ident: ref3 doi: 10.1145/3131365.3131369 – ident: ref13 doi: 10.1109/TITS.2024.3418864 – ident: ref25 doi: 10.1145/3637528.3671984 – ident: ref36 doi: 10.1145/3485447.3512104 – ident: ref5 doi: 10.1145/3524610.3527922 – ident: ref26 doi: 10.1145/3604915.3608857 – ident: ref9 doi: 10.1145/3397271.3401063 |
| SSID | ssj0001105196 |
| Score | 2.371979 |
| Snippet | Trigger-action programming (TAP) is an Internet of Things (IoT) paradigm that enables nonprofessional end-users to automate smart devices by formulating rules,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13157 |
| SubjectTerms | Accuracy Automation Cognition Contrastive learning Internet of Things Internet of Things (IoT) Large language models large language models (LLMs) Performance evaluation Programming Recommender systems Representations rule recommendation Singular value decomposition Smart devices trigger-action programming (TAP) Turning |
| Title | LLM4TAP: LLM-Enhanced TAP Rule Recommendation |
| URI | https://ieeexplore.ieee.org/document/10876163 https://www.proquest.com/docview/3202186680 |
| Volume | 12 |
| WOSCitedRecordID | wos001485409200032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5s8eDF-qhYrbIHT0JqNps2G29FWlRqLVKht2XzWBTqVvrw9zvJbn0gCt7CkoTlm53MTGZnPoCzsINhh5aUiDClhKNJIZIbQ4SRjCojraUF2YQYDuPJRI7KYnVfC2Ot9T-f2ZYb-ly-memVuypDDUfdRQeiAhUhRFGs9XmhEjpvpFNmLkMqL25v7scYAbJ2K2pHDB2db7bHk6n8OIG9WenX_vlCO7Bd-o9BtxD4LmzYfA9qa26GoFTVfSCDwR0fd0eXAQ5IL3_ymf4AnwQPq6kNXNj5grsXlEp1eOz3xlfXpKRGIJpJviTMciV0jGeT0tJqw0ITKaW55VQpxDoSIrQpj5WmaYZelqQZWmZDUWLMOMrzA6jms9weQtARlGUp78Q0YyirKM64jbIIhasY16lqAF2Dluiyb7ijr5gmPn6gMnE4Jw7npMS5AecfS16Lphl_Ta47YL9MLDBtQHMtmqTUq0Xi2N5di76YHv2y7Bi23O4uwR-2m1Bdzlf2BDb12_J5MT_1n8w79le9LQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60CnqxPipWq-bgSdi62WybrLciLa2mtUiE3kL2ERRqK334-51NUh-Igrcl7Cbhm8zOzE5mPoALt4lhhxKU-G5CCUeTQgTXmvhaMCq1MIbmZBP-YBCMRmJYFKtntTDGmOznM1O3wyyXr6dqaY_KUMNRd9GBWIeNBufMzcu1Po9UXOuPNIvcpUvF1W3vPsIYkDXqXsNj6Op8sz4ZncqPPTgzLJ3yP19pF3YKD9Jp5SLfgzUz2Yfyip3BKZT1AEgY9nnUGl47OCDtyVOW63fwivOwHBvHBp4vePecVKkCj512dNMlBTkCUUzwBWGGS18FuDtJJYzSzNWelIobTqVEtD3fd03CA6lokqKfJWiKtllTlBnTlvT8EEqT6cQcgdP0KUsT3gxoylBaXpBy46UeilcyrhJZBboCLVZF53BLYDGOswiCitjiHFuc4wLnKlx-LHnN22b8Nbligf0yMce0CrWVaOJCs-ax5Xu3TfoCevzLsnPY6kb9MA57g7sT2LZPsul-t1GD0mK2NKewqd4Wz_PZWfb5vAP6tMB0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LLM4TAP%3A+LLM-Enhanced+TAP+Rule+Recommendation&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Wu%2C+Gang&rft.au=Hu%2C+Liang&rft.au=Hu%2C+Yuxiao&rft.au=Xiong%2C+Xingbo&rft.date=2025-05-15&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=12&rft.issue=10&rft.spage=13157&rft.epage=13169&rft_id=info:doi/10.1109%2FJIOT.2025.3532977&rft.externalDocID=10876163 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |