Spatial Representativeness of Soil Moisture Stations and Its Influential Factors at a Global Scale
The spatial representativeness error of in situ soil moisture (SM) is recognized as a major source of uncertainty when validating satellite SM products with a spatial resolution of tens of kilometers. Site underrepresentation is primarily caused by environmental heterogeneity, but their relationship...
Saved in:
| Published in: | IEEE transactions on geoscience and remote sensing Vol. 63; pp. 1 - 15 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The spatial representativeness error of in situ soil moisture (SM) is recognized as a major source of uncertainty when validating satellite SM products with a spatial resolution of tens of kilometers. Site underrepresentation is primarily caused by environmental heterogeneity, but their relationship remains poorly understood. Here, we assessed the spatial representativeness of in situ SM from 322 strictly screened stations worldwide relative to coarse-resolution (~0.25°) satellite footprint based on the extended triple collocation (ETC) method. We then evaluated the influence of the heterogeneity of four environmental factors (soil texture, land cover types, elevation, and vegetation coverage) on site representativeness. Moreover, we calculated SM variability within the satellite footprint based on 1-km SM data to explore its relationship with environmental heterogeneity. Results indicate that about 63% of the sites have relatively good spatial representativeness (ETC-derived correlation coefficient <inline-formula> <tex-math notation="LaTeX">\ge 0.7 </tex-math></inline-formula>). Soil texture and land cover exhibit greater heterogeneity across the mid and high latitudes of the Northern Hemisphere. The larger heterogeneity in elevation and vegetation coverage is primarily found in regions with significant ridges and dense vegetation, respectively. Land cover is the major factor influencing the spatial representativeness of SM sites, and the increase in the heterogeneity of land cover enhances SM variability, which negatively impacts site representativeness. The in situ SM can be more representative when the proportion of the land cover type where the site is located is higher or when there are fewer land cover types within the satellite footprint. Moreover, it is found that the newly proposed metric of the similar area ratio of sites, as a measure of land cover heterogeneity, can effectively reflect SM variability. This metric can also serve as a supplementary criterion for selecting representative sites, particularly in situations where sites are sparse and the ETC method is inapplicable. These findings provide useful references for robust evaluation of satellite SM products based on in situ measurements (e.g., in situ SM upscaling and SM site deployment). |
|---|---|
| AbstractList | The spatial representativeness error of in situ soil moisture (SM) is recognized as a major source of uncertainty when validating satellite SM products with a spatial resolution of tens of kilometers. Site underrepresentation is primarily caused by environmental heterogeneity, but their relationship remains poorly understood. Here, we assessed the spatial representativeness of in situ SM from 322 strictly screened stations worldwide relative to coarse-resolution (~0.25°) satellite footprint based on the extended triple collocation (ETC) method. We then evaluated the influence of the heterogeneity of four environmental factors (soil texture, land cover types, elevation, and vegetation coverage) on site representativeness. Moreover, we calculated SM variability within the satellite footprint based on 1-km SM data to explore its relationship with environmental heterogeneity. Results indicate that about 63% of the sites have relatively good spatial representativeness (ETC-derived correlation coefficient <inline-formula> <tex-math notation="LaTeX">\ge 0.7 </tex-math></inline-formula>). Soil texture and land cover exhibit greater heterogeneity across the mid and high latitudes of the Northern Hemisphere. The larger heterogeneity in elevation and vegetation coverage is primarily found in regions with significant ridges and dense vegetation, respectively. Land cover is the major factor influencing the spatial representativeness of SM sites, and the increase in the heterogeneity of land cover enhances SM variability, which negatively impacts site representativeness. The in situ SM can be more representative when the proportion of the land cover type where the site is located is higher or when there are fewer land cover types within the satellite footprint. Moreover, it is found that the newly proposed metric of the similar area ratio of sites, as a measure of land cover heterogeneity, can effectively reflect SM variability. This metric can also serve as a supplementary criterion for selecting representative sites, particularly in situations where sites are sparse and the ETC method is inapplicable. These findings provide useful references for robust evaluation of satellite SM products based on in situ measurements (e.g., in situ SM upscaling and SM site deployment). The spatial representativeness error of in situ soil moisture (SM) is recognized as a major source of uncertainty when validating satellite SM products with a spatial resolution of tens of kilometers. Site underrepresentation is primarily caused by environmental heterogeneity, but their relationship remains poorly understood. Here, we assessed the spatial representativeness of in situ SM from 322 strictly screened stations worldwide relative to coarse-resolution (~0.25°) satellite footprint based on the extended triple collocation (ETC) method. We then evaluated the influence of the heterogeneity of four environmental factors (soil texture, land cover types, elevation, and vegetation coverage) on site representativeness. Moreover, we calculated SM variability within the satellite footprint based on 1-km SM data to explore its relationship with environmental heterogeneity. Results indicate that about 63% of the sites have relatively good spatial representativeness (ETC-derived correlation coefficient [Formula Omitted]). Soil texture and land cover exhibit greater heterogeneity across the mid and high latitudes of the Northern Hemisphere. The larger heterogeneity in elevation and vegetation coverage is primarily found in regions with significant ridges and dense vegetation, respectively. Land cover is the major factor influencing the spatial representativeness of SM sites, and the increase in the heterogeneity of land cover enhances SM variability, which negatively impacts site representativeness. The in situ SM can be more representative when the proportion of the land cover type where the site is located is higher or when there are fewer land cover types within the satellite footprint. Moreover, it is found that the newly proposed metric of the similar area ratio of sites, as a measure of land cover heterogeneity, can effectively reflect SM variability. This metric can also serve as a supplementary criterion for selecting representative sites, particularly in situations where sites are sparse and the ETC method is inapplicable. These findings provide useful references for robust evaluation of satellite SM products based on in situ measurements (e.g., in situ SM upscaling and SM site deployment). |
| Author | Shi, Pengfei Letu, Husi Chen, Kun-Shan Zeng, Jiangyuan Bi, Haiyun Peng, Chenchen Zhang, Xiang Ma, Hongliang |
| Author_xml | – sequence: 1 givenname: Chenchen orcidid: 0000-0002-0173-4669 surname: Peng fullname: Peng, Chenchen organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Jiangyuan orcidid: 0000-0002-5039-6774 surname: Zeng fullname: Zeng, Jiangyuan email: zengjy@radi.ac.cn organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Kun-Shan orcidid: 0000-0001-7698-9861 surname: Chen fullname: Chen, Kun-Shan organization: Institute of Space Earth Science, Nanjing University, Suzhou Campus, Suzhou, China – sequence: 4 givenname: Hongliang orcidid: 0000-0002-8260-8030 surname: Ma fullname: Ma, Hongliang organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Husi surname: Letu fullname: Letu, Husi organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 6 givenname: Xiang orcidid: 0000-0002-1017-742X surname: Zhang fullname: Zhang, Xiang organization: National Engineering Research Center of Geographic Information Systems, School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan, China – sequence: 7 givenname: Pengfei surname: Shi fullname: Shi, Pengfei organization: Yellow River Engineering Consulting Company Ltd., Zhengzhou, China – sequence: 8 givenname: Haiyun surname: Bi fullname: Bi, Haiyun organization: State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing, China |
| BookMark | eNp9kE1Lw0AQhhepYFv9AYKHBc-p-5VN9ijF1oIiNPW8bDYTSInZursR_PcmpAfx4GmYeeeZgWeBZp3rAKFbSlaUEvVw2O6LFSNMrHjKuMjFBZrTNM0TIoWYoTmhSiYsV-wKLUI4EkJFSrM5KouTiY1p8R5OHgJ0cWi_oIMQsKtx4ZoWv7omxN4DLsbQdQGbrsK7GPCuq9t-YMYDG2Oj80MWscHb1pXDrLCmhWt0WZs2wM25LtH75umwfk5e3ra79eNLYpkSMWFVmZUqB65AWZNRUuayGnqVlsxwU3EKjCueC14pamwmUgmQGmOhNGVdSb5E99Pdk3efPYSoj6733fBScyp5KiVXatii05b1LgQPtT755sP4b02JHlXqUaUeVeqzyoHJ_jC2mVREb5r2X_JuIhsA-PUpp5kUnP8AKOOErA |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1016_j_rse_2025_114892 crossref_primary_10_34133_remotesensing_0726 crossref_primary_10_1080_17538947_2025_2555412 crossref_primary_10_34133_remotesensing_0729 crossref_primary_10_1109_TGRS_2025_3565818 crossref_primary_10_1080_10095020_2025_2536758 |
| Cites_doi | 10.1109/JSTARS.2016.2560878 10.1109/JSTARS.2017.2690220 10.1016/S0921-8181(98)00047-2 10.1175/JHM-D-19-0134.1 10.1038/163688a0 10.1109/JSTARS.2024.3362833 10.1016/j.jhydrol.2017.05.026 10.1109/JPROC.2010.2043918 10.1111/2041-210X.13650 10.1016/j.geodrs.2021.e00456 10.5194/essd-15-2055-2023 10.5194/hess-25-5749-2021 10.1029/2021WR030895 10.1016/j.jhydrol.2014.10.024 10.1109/TGRS.2022.3176748 10.1109/JSTARS.2016.2569998 10.1016/j.rse.2022.112985 10.1109/JPROC.2010.2043032 10.1016/j.rse.2023.113784 10.1109/TGRS.2024.3361890 10.1016/j.rse.2015.03.008 10.1109/TGRS.2021.3116078 10.1016/j.jhydrol.2013.11.061 10.2136/vzj2012.0170 10.1016/j.rse.2014.07.023 10.1029/2011WR011518 10.1016/j.rse.2023.113569 10.1016/j.rse.2018.05.008 10.1016/j.rse.2017.01.021 10.1016/j.rse.2019.111215 10.1029/2022GL098586 10.1029/2011RG000372 10.1016/j.rse.2017.11.002 10.3390/rs10030427 10.1016/j.jhydrol.2016.03.060 10.1002/2013MS000293 10.1029/2007GL031813 10.1002/2015JD023305 10.1029/1999JD900060 10.1175/2010JHM1285.1 10.1109/TGRS.2019.2928954 10.1016/S0022-1694(98)00187-5 10.1016/j.rse.2021.112706 10.1038/s41467-022-29838-9 10.1002/2013WR015138 10.1002/wrcr.20069 10.1080/13658810210149407 10.1038/s41597-023-02011-7 10.1002/2014GL061322 10.1002/hyp.10929 10.1109/IGARSS53475.2024.10642763 10.1109/JSTARS.2020.3033591 10.1016/j.rse.2024.114197 10.1016/j.jag.2015.09.002 10.1109/TGRS.2021.3115140 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2024.3523484 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 15 |
| ExternalDocumentID | 10_1109_TGRS_2024_3523484 10817643 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42422106 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2024YFF0810400 – fundername: Villum Young Investigator grantid: VIL53048 funderid: 10.13039/501100001809 – fundername: Open Fund of State Key Laboratory of Remote Sensing Science grantid: OFSLRSS202429 – fundername: Deployment Program of AIRCAS grantid: E4Z202021F – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences; Youth Innovation Promotion Association CAS grantid: Y2022050 funderid: 10.13039/501100004739 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c294t-2db7b98e39e9ca710b86d98e95b2a3ad31e2393843d91ac7456ee5aacebabfd63 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001414895000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Tue Jul 22 15:11:55 EDT 2025 Tue Nov 18 22:32:50 EST 2025 Sat Nov 29 03:32:46 EST 2025 Wed Aug 27 01:53:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-2db7b98e39e9ca710b86d98e95b2a3ad31e2393843d91ac7456ee5aacebabfd63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1017-742X 0000-0001-7698-9861 0000-0002-8260-8030 0000-0002-0173-4669 0000-0002-5039-6774 |
| PQID | 3163566399 |
| PQPubID | 85465 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3163566399 ieee_primary_10817643 crossref_primary_10_1109_TGRS_2024_3523484 crossref_citationtrail_10_1109_TGRS_2024_3523484 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 Hastings (ref47) 1998; 4 ref18 ref51 ref50 ref46 ref45 ref48 ref42 ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Beaudoing (ref43) 2020 |
| References_xml | – ident: ref13 doi: 10.1109/JSTARS.2016.2560878 – ident: ref19 doi: 10.1109/JSTARS.2017.2690220 – ident: ref50 doi: 10.1016/S0921-8181(98)00047-2 – ident: ref18 doi: 10.1175/JHM-D-19-0134.1 – ident: ref28 doi: 10.1038/163688a0 – volume-title: GLDAS Noah Land Surface Model L4 Monthly 0.25 x 0.25 Degree V2.1 year: 2020 ident: ref43 – ident: ref33 doi: 10.1109/JSTARS.2024.3362833 – ident: ref54 doi: 10.1016/j.jhydrol.2017.05.026 – ident: ref1 doi: 10.1109/JPROC.2010.2043918 – ident: ref37 doi: 10.1111/2041-210X.13650 – ident: ref49 doi: 10.1016/j.geodrs.2021.e00456 – ident: ref36 doi: 10.5194/essd-15-2055-2023 – ident: ref40 doi: 10.5194/hess-25-5749-2021 – ident: ref26 doi: 10.1029/2021WR030895 – ident: ref9 doi: 10.1016/j.jhydrol.2014.10.024 – ident: ref30 doi: 10.1109/TGRS.2022.3176748 – ident: ref12 doi: 10.1109/JSTARS.2016.2569998 – ident: ref46 doi: 10.1016/j.rse.2022.112985 – ident: ref2 doi: 10.1109/JPROC.2010.2043032 – ident: ref39 doi: 10.1016/j.rse.2023.113784 – ident: ref27 doi: 10.1109/TGRS.2024.3361890 – ident: ref57 doi: 10.1016/j.rse.2015.03.008 – ident: ref6 doi: 10.1109/TGRS.2021.3116078 – ident: ref48 doi: 10.1016/j.jhydrol.2013.11.061 – ident: ref17 doi: 10.2136/vzj2012.0170 – ident: ref3 doi: 10.1016/j.rse.2014.07.023 – ident: ref55 doi: 10.1029/2011WR011518 – ident: ref23 doi: 10.1016/j.rse.2023.113569 – ident: ref42 doi: 10.1016/j.rse.2018.05.008 – ident: ref4 doi: 10.1016/j.rse.2017.01.021 – ident: ref5 doi: 10.1016/j.rse.2019.111215 – ident: ref53 doi: 10.1029/2022GL098586 – ident: ref20 doi: 10.1029/2011RG000372 – ident: ref44 doi: 10.1016/j.rse.2017.11.002 – ident: ref32 doi: 10.3390/rs10030427 – ident: ref22 doi: 10.1016/j.jhydrol.2016.03.060 – ident: ref45 doi: 10.1002/2013MS000293 – ident: ref31 doi: 10.1029/2007GL031813 – ident: ref11 doi: 10.1002/2015JD023305 – ident: ref21 doi: 10.1029/1999JD900060 – ident: ref16 doi: 10.1175/2010JHM1285.1 – ident: ref14 doi: 10.1109/TGRS.2019.2928954 – ident: ref52 doi: 10.1016/S0022-1694(98)00187-5 – ident: ref35 doi: 10.1016/j.rse.2021.112706 – ident: ref38 doi: 10.1038/s41467-022-29838-9 – ident: ref8 doi: 10.1002/2013WR015138 – ident: ref56 doi: 10.1002/wrcr.20069 – ident: ref51 doi: 10.1080/13658810210149407 – ident: ref34 doi: 10.1038/s41597-023-02011-7 – volume: 4 start-page: 218 issue: 6 year: 1998 ident: ref47 article-title: Development & assessment of the global land one-km base elevation digital elevation model (GLOBE) publication-title: Group – ident: ref25 doi: 10.1002/2014GL061322 – ident: ref7 doi: 10.1002/hyp.10929 – ident: ref24 doi: 10.1109/IGARSS53475.2024.10642763 – ident: ref10 doi: 10.1109/JSTARS.2020.3033591 – ident: ref41 doi: 10.1016/j.rse.2024.114197 – ident: ref15 doi: 10.1016/j.jag.2015.09.002 – ident: ref29 doi: 10.1109/TGRS.2021.3115140 |
| SSID | ssj0014517 |
| Score | 2.568048 |
| Snippet | The spatial representativeness error of in situ soil moisture (SM) is recognized as a major source of uncertainty when validating satellite SM products with a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Collocation methods Correlation coefficient Correlation coefficients Environmental factors Environmental variables Evaluation global scale Heterogeneity In situ measurement Laboratories Land cover Land surface Moisture content Northern Hemisphere Plant cover Reliability Ridges Satellites Sea measurements Sensors site representativeness Soil Soil measurements Soil moisture soil moisture (SM) Soil properties Soil texture Spatial discrimination spatial heterogeneity Spatial resolution Surface topography Texture validation Variability Vegetation |
| Title | Spatial Representativeness of Soil Moisture Stations and Its Influential Factors at a Global Scale |
| URI | https://ieeexplore.ieee.org/document/10817643 https://www.proquest.com/docview/3163566399 |
| Volume | 63 |
| WOSCitedRecordID | wos001414895000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5sUdCDb7FaZQ-ehGiS3Tz2KGK1oEWsgrewjwkUSiNN6u93H6koouAtgZ0l5NvZndl5fABnItRJInUcICILGCoayAwxKEMtpNJpmWrXxPU-G43y11f-2Baru1oYI-OSz_DCPrpYvq7Uwl6VGQ3Po8wcoR3oZFnmi7U-QwYsidra6DQwXkTchjCjkF8-3z6NjSsYswtjblCWs2-HkGNV-bEVu_NlsPXPL9uGzdaQJFce-R1YwdkubHxpL7gLay69U9V7IC3zsFlp5Mklvvp6I7_Nkaok42oyJQ-VQXwxRzL20fmaiJkmw6YmQ09k4iYYeH4eIhoiiCcMIGODM-7Dy-Dm-fouaNkVAhVz1gSxlpnkOVKOXAljaMg81eadJzIWVGgaoW2PljOqeSRUZiwtxEQIhVLIUqf0ALqzaoaHQMrEOG15KXTKGUOqpNHzkkouOUs0JlEPwuXvLlTbetwyYEwL54KEvLAIFRahokWoB-efIm--78Zfg_ctJF8GejR60F-CWrSqWRc0si35rGF29IvYMazHluXXXbT0odvMF3gCq-q9mdTzU7fqPgAfPdaQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC58rKgHdV3F8dmHPQlxk3R3kj6KODo4DuLMgrfQjwoIMpFJxt9vP6K4yAreEuhqQr6u7qquxwfwW8aGc2XSCBFZxFDTSOWIURUbqbTJqsz4Jq7DfDQqHh7EXVes7mthrIxPPsMz9-hj-abWc3dVZjW8SHJ7hC7CMmcsTUK51nvQgPGkq47OIutHpF0QM4nFn8nV_dg6gyk7swYHZQX75xjyvCqfNmN_wvQ3v_ltW7DRmZLkPGD_ExZwug3rHxoMbsOKT_DUzS9QjnvYrjVy71NfQ8VR2OhIXZFx_fhEbmuL-XyGZBzi8w2RU0MGbUMGgcrET9APDD1EtkSSQBlAxhZp3IG__cvJxXXU8StEOhWsjVKjciUKpAKFltbUUEVm7LvgKpVUGpqga5BWMGpEInVubS1ELqVGJVVlMroLS9N6intAKm7dtqKSJhOMIdXKanpFlVCCcYM86UH89rtL3TUfdxwYT6V3QmJROoRKh1DZIdSD03eR59B546vBOw6SDwMDGj04fAO17JSzKWnimvI502z_P2InsHo9uR2Ww8Ho5gDWUsf5669dDmGpnc3xCH7ol_axmR37FfgKcSTZ1w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Representativeness+of+Soil+Moisture+Stations+and+Its+Influential+Factors+at+a+Global+Scale&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Peng%2C+Chenchen&rft.au=Zeng%2C+Jiangyuan&rft.au=Chen%2C+Kun-Shan&rft.au=Ma%2C+Hongliang&rft.date=2025&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=63&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTGRS.2024.3523484&rft.externalDocID=10817643 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |