Spatial Representativeness of Soil Moisture Stations and Its Influential Factors at a Global Scale

The spatial representativeness error of in situ soil moisture (SM) is recognized as a major source of uncertainty when validating satellite SM products with a spatial resolution of tens of kilometers. Site underrepresentation is primarily caused by environmental heterogeneity, but their relationship...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 63; pp. 1 - 15
Main Authors: Peng, Chenchen, Zeng, Jiangyuan, Chen, Kun-Shan, Ma, Hongliang, Letu, Husi, Zhang, Xiang, Shi, Pengfei, Bi, Haiyun
Format: Journal Article
Language:English
Published: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The spatial representativeness error of in situ soil moisture (SM) is recognized as a major source of uncertainty when validating satellite SM products with a spatial resolution of tens of kilometers. Site underrepresentation is primarily caused by environmental heterogeneity, but their relationship remains poorly understood. Here, we assessed the spatial representativeness of in situ SM from 322 strictly screened stations worldwide relative to coarse-resolution (~0.25°) satellite footprint based on the extended triple collocation (ETC) method. We then evaluated the influence of the heterogeneity of four environmental factors (soil texture, land cover types, elevation, and vegetation coverage) on site representativeness. Moreover, we calculated SM variability within the satellite footprint based on 1-km SM data to explore its relationship with environmental heterogeneity. Results indicate that about 63% of the sites have relatively good spatial representativeness (ETC-derived correlation coefficient <inline-formula> <tex-math notation="LaTeX">\ge 0.7 </tex-math></inline-formula>). Soil texture and land cover exhibit greater heterogeneity across the mid and high latitudes of the Northern Hemisphere. The larger heterogeneity in elevation and vegetation coverage is primarily found in regions with significant ridges and dense vegetation, respectively. Land cover is the major factor influencing the spatial representativeness of SM sites, and the increase in the heterogeneity of land cover enhances SM variability, which negatively impacts site representativeness. The in situ SM can be more representative when the proportion of the land cover type where the site is located is higher or when there are fewer land cover types within the satellite footprint. Moreover, it is found that the newly proposed metric of the similar area ratio of sites, as a measure of land cover heterogeneity, can effectively reflect SM variability. This metric can also serve as a supplementary criterion for selecting representative sites, particularly in situations where sites are sparse and the ETC method is inapplicable. These findings provide useful references for robust evaluation of satellite SM products based on in situ measurements (e.g., in situ SM upscaling and SM site deployment).
AbstractList The spatial representativeness error of in situ soil moisture (SM) is recognized as a major source of uncertainty when validating satellite SM products with a spatial resolution of tens of kilometers. Site underrepresentation is primarily caused by environmental heterogeneity, but their relationship remains poorly understood. Here, we assessed the spatial representativeness of in situ SM from 322 strictly screened stations worldwide relative to coarse-resolution (~0.25°) satellite footprint based on the extended triple collocation (ETC) method. We then evaluated the influence of the heterogeneity of four environmental factors (soil texture, land cover types, elevation, and vegetation coverage) on site representativeness. Moreover, we calculated SM variability within the satellite footprint based on 1-km SM data to explore its relationship with environmental heterogeneity. Results indicate that about 63% of the sites have relatively good spatial representativeness (ETC-derived correlation coefficient <inline-formula> <tex-math notation="LaTeX">\ge 0.7 </tex-math></inline-formula>). Soil texture and land cover exhibit greater heterogeneity across the mid and high latitudes of the Northern Hemisphere. The larger heterogeneity in elevation and vegetation coverage is primarily found in regions with significant ridges and dense vegetation, respectively. Land cover is the major factor influencing the spatial representativeness of SM sites, and the increase in the heterogeneity of land cover enhances SM variability, which negatively impacts site representativeness. The in situ SM can be more representative when the proportion of the land cover type where the site is located is higher or when there are fewer land cover types within the satellite footprint. Moreover, it is found that the newly proposed metric of the similar area ratio of sites, as a measure of land cover heterogeneity, can effectively reflect SM variability. This metric can also serve as a supplementary criterion for selecting representative sites, particularly in situations where sites are sparse and the ETC method is inapplicable. These findings provide useful references for robust evaluation of satellite SM products based on in situ measurements (e.g., in situ SM upscaling and SM site deployment).
The spatial representativeness error of in situ soil moisture (SM) is recognized as a major source of uncertainty when validating satellite SM products with a spatial resolution of tens of kilometers. Site underrepresentation is primarily caused by environmental heterogeneity, but their relationship remains poorly understood. Here, we assessed the spatial representativeness of in situ SM from 322 strictly screened stations worldwide relative to coarse-resolution (~0.25°) satellite footprint based on the extended triple collocation (ETC) method. We then evaluated the influence of the heterogeneity of four environmental factors (soil texture, land cover types, elevation, and vegetation coverage) on site representativeness. Moreover, we calculated SM variability within the satellite footprint based on 1-km SM data to explore its relationship with environmental heterogeneity. Results indicate that about 63% of the sites have relatively good spatial representativeness (ETC-derived correlation coefficient [Formula Omitted]). Soil texture and land cover exhibit greater heterogeneity across the mid and high latitudes of the Northern Hemisphere. The larger heterogeneity in elevation and vegetation coverage is primarily found in regions with significant ridges and dense vegetation, respectively. Land cover is the major factor influencing the spatial representativeness of SM sites, and the increase in the heterogeneity of land cover enhances SM variability, which negatively impacts site representativeness. The in situ SM can be more representative when the proportion of the land cover type where the site is located is higher or when there are fewer land cover types within the satellite footprint. Moreover, it is found that the newly proposed metric of the similar area ratio of sites, as a measure of land cover heterogeneity, can effectively reflect SM variability. This metric can also serve as a supplementary criterion for selecting representative sites, particularly in situations where sites are sparse and the ETC method is inapplicable. These findings provide useful references for robust evaluation of satellite SM products based on in situ measurements (e.g., in situ SM upscaling and SM site deployment).
Author Shi, Pengfei
Letu, Husi
Chen, Kun-Shan
Zeng, Jiangyuan
Bi, Haiyun
Peng, Chenchen
Zhang, Xiang
Ma, Hongliang
Author_xml – sequence: 1
  givenname: Chenchen
  orcidid: 0000-0002-0173-4669
  surname: Peng
  fullname: Peng, Chenchen
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Jiangyuan
  orcidid: 0000-0002-5039-6774
  surname: Zeng
  fullname: Zeng, Jiangyuan
  email: zengjy@radi.ac.cn
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Kun-Shan
  orcidid: 0000-0001-7698-9861
  surname: Chen
  fullname: Chen, Kun-Shan
  organization: Institute of Space Earth Science, Nanjing University, Suzhou Campus, Suzhou, China
– sequence: 4
  givenname: Hongliang
  orcidid: 0000-0002-8260-8030
  surname: Ma
  fullname: Ma, Hongliang
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Husi
  surname: Letu
  fullname: Letu, Husi
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Xiang
  orcidid: 0000-0002-1017-742X
  surname: Zhang
  fullname: Zhang, Xiang
  organization: National Engineering Research Center of Geographic Information Systems, School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan, China
– sequence: 7
  givenname: Pengfei
  surname: Shi
  fullname: Shi, Pengfei
  organization: Yellow River Engineering Consulting Company Ltd., Zhengzhou, China
– sequence: 8
  givenname: Haiyun
  surname: Bi
  fullname: Bi, Haiyun
  organization: State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing, China
BookMark eNp9kE1Lw0AQhhepYFv9AYKHBc-p-5VN9ijF1oIiNPW8bDYTSInZursR_PcmpAfx4GmYeeeZgWeBZp3rAKFbSlaUEvVw2O6LFSNMrHjKuMjFBZrTNM0TIoWYoTmhSiYsV-wKLUI4EkJFSrM5KouTiY1p8R5OHgJ0cWi_oIMQsKtx4ZoWv7omxN4DLsbQdQGbrsK7GPCuq9t-YMYDG2Oj80MWscHb1pXDrLCmhWt0WZs2wM25LtH75umwfk5e3ra79eNLYpkSMWFVmZUqB65AWZNRUuayGnqVlsxwU3EKjCueC14pamwmUgmQGmOhNGVdSb5E99Pdk3efPYSoj6733fBScyp5KiVXatii05b1LgQPtT755sP4b02JHlXqUaUeVeqzyoHJ_jC2mVREb5r2X_JuIhsA-PUpp5kUnP8AKOOErA
CODEN IGRSD2
CitedBy_id crossref_primary_10_1016_j_rse_2025_114892
crossref_primary_10_34133_remotesensing_0726
crossref_primary_10_1080_17538947_2025_2555412
crossref_primary_10_34133_remotesensing_0729
crossref_primary_10_1109_TGRS_2025_3565818
crossref_primary_10_1080_10095020_2025_2536758
Cites_doi 10.1109/JSTARS.2016.2560878
10.1109/JSTARS.2017.2690220
10.1016/S0921-8181(98)00047-2
10.1175/JHM-D-19-0134.1
10.1038/163688a0
10.1109/JSTARS.2024.3362833
10.1016/j.jhydrol.2017.05.026
10.1109/JPROC.2010.2043918
10.1111/2041-210X.13650
10.1016/j.geodrs.2021.e00456
10.5194/essd-15-2055-2023
10.5194/hess-25-5749-2021
10.1029/2021WR030895
10.1016/j.jhydrol.2014.10.024
10.1109/TGRS.2022.3176748
10.1109/JSTARS.2016.2569998
10.1016/j.rse.2022.112985
10.1109/JPROC.2010.2043032
10.1016/j.rse.2023.113784
10.1109/TGRS.2024.3361890
10.1016/j.rse.2015.03.008
10.1109/TGRS.2021.3116078
10.1016/j.jhydrol.2013.11.061
10.2136/vzj2012.0170
10.1016/j.rse.2014.07.023
10.1029/2011WR011518
10.1016/j.rse.2023.113569
10.1016/j.rse.2018.05.008
10.1016/j.rse.2017.01.021
10.1016/j.rse.2019.111215
10.1029/2022GL098586
10.1029/2011RG000372
10.1016/j.rse.2017.11.002
10.3390/rs10030427
10.1016/j.jhydrol.2016.03.060
10.1002/2013MS000293
10.1029/2007GL031813
10.1002/2015JD023305
10.1029/1999JD900060
10.1175/2010JHM1285.1
10.1109/TGRS.2019.2928954
10.1016/S0022-1694(98)00187-5
10.1016/j.rse.2021.112706
10.1038/s41467-022-29838-9
10.1002/2013WR015138
10.1002/wrcr.20069
10.1080/13658810210149407
10.1038/s41597-023-02011-7
10.1002/2014GL061322
10.1002/hyp.10929
10.1109/IGARSS53475.2024.10642763
10.1109/JSTARS.2020.3033591
10.1016/j.rse.2024.114197
10.1016/j.jag.2015.09.002
10.1109/TGRS.2021.3115140
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3523484
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 15
ExternalDocumentID 10_1109_TGRS_2024_3523484
10817643
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42422106
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2024YFF0810400
– fundername: Villum Young Investigator
  grantid: VIL53048
  funderid: 10.13039/501100001809
– fundername: Open Fund of State Key Laboratory of Remote Sensing Science
  grantid: OFSLRSS202429
– fundername: Deployment Program of AIRCAS
  grantid: E4Z202021F
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences; Youth Innovation Promotion Association CAS
  grantid: Y2022050
  funderid: 10.13039/501100004739
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-2db7b98e39e9ca710b86d98e95b2a3ad31e2393843d91ac7456ee5aacebabfd63
IEDL.DBID RIE
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001414895000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Tue Jul 22 15:11:55 EDT 2025
Tue Nov 18 22:32:50 EST 2025
Sat Nov 29 03:32:46 EST 2025
Wed Aug 27 01:53:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-2db7b98e39e9ca710b86d98e95b2a3ad31e2393843d91ac7456ee5aacebabfd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1017-742X
0000-0001-7698-9861
0000-0002-8260-8030
0000-0002-0173-4669
0000-0002-5039-6774
PQID 3163566399
PQPubID 85465
PageCount 15
ParticipantIDs proquest_journals_3163566399
ieee_primary_10817643
crossref_primary_10_1109_TGRS_2024_3523484
crossref_citationtrail_10_1109_TGRS_2024_3523484
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
Hastings (ref47) 1998; 4
ref18
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Beaudoing (ref43) 2020
References_xml – ident: ref13
  doi: 10.1109/JSTARS.2016.2560878
– ident: ref19
  doi: 10.1109/JSTARS.2017.2690220
– ident: ref50
  doi: 10.1016/S0921-8181(98)00047-2
– ident: ref18
  doi: 10.1175/JHM-D-19-0134.1
– ident: ref28
  doi: 10.1038/163688a0
– volume-title: GLDAS Noah Land Surface Model L4 Monthly 0.25 x 0.25 Degree V2.1
  year: 2020
  ident: ref43
– ident: ref33
  doi: 10.1109/JSTARS.2024.3362833
– ident: ref54
  doi: 10.1016/j.jhydrol.2017.05.026
– ident: ref1
  doi: 10.1109/JPROC.2010.2043918
– ident: ref37
  doi: 10.1111/2041-210X.13650
– ident: ref49
  doi: 10.1016/j.geodrs.2021.e00456
– ident: ref36
  doi: 10.5194/essd-15-2055-2023
– ident: ref40
  doi: 10.5194/hess-25-5749-2021
– ident: ref26
  doi: 10.1029/2021WR030895
– ident: ref9
  doi: 10.1016/j.jhydrol.2014.10.024
– ident: ref30
  doi: 10.1109/TGRS.2022.3176748
– ident: ref12
  doi: 10.1109/JSTARS.2016.2569998
– ident: ref46
  doi: 10.1016/j.rse.2022.112985
– ident: ref2
  doi: 10.1109/JPROC.2010.2043032
– ident: ref39
  doi: 10.1016/j.rse.2023.113784
– ident: ref27
  doi: 10.1109/TGRS.2024.3361890
– ident: ref57
  doi: 10.1016/j.rse.2015.03.008
– ident: ref6
  doi: 10.1109/TGRS.2021.3116078
– ident: ref48
  doi: 10.1016/j.jhydrol.2013.11.061
– ident: ref17
  doi: 10.2136/vzj2012.0170
– ident: ref3
  doi: 10.1016/j.rse.2014.07.023
– ident: ref55
  doi: 10.1029/2011WR011518
– ident: ref23
  doi: 10.1016/j.rse.2023.113569
– ident: ref42
  doi: 10.1016/j.rse.2018.05.008
– ident: ref4
  doi: 10.1016/j.rse.2017.01.021
– ident: ref5
  doi: 10.1016/j.rse.2019.111215
– ident: ref53
  doi: 10.1029/2022GL098586
– ident: ref20
  doi: 10.1029/2011RG000372
– ident: ref44
  doi: 10.1016/j.rse.2017.11.002
– ident: ref32
  doi: 10.3390/rs10030427
– ident: ref22
  doi: 10.1016/j.jhydrol.2016.03.060
– ident: ref45
  doi: 10.1002/2013MS000293
– ident: ref31
  doi: 10.1029/2007GL031813
– ident: ref11
  doi: 10.1002/2015JD023305
– ident: ref21
  doi: 10.1029/1999JD900060
– ident: ref16
  doi: 10.1175/2010JHM1285.1
– ident: ref14
  doi: 10.1109/TGRS.2019.2928954
– ident: ref52
  doi: 10.1016/S0022-1694(98)00187-5
– ident: ref35
  doi: 10.1016/j.rse.2021.112706
– ident: ref38
  doi: 10.1038/s41467-022-29838-9
– ident: ref8
  doi: 10.1002/2013WR015138
– ident: ref56
  doi: 10.1002/wrcr.20069
– ident: ref51
  doi: 10.1080/13658810210149407
– ident: ref34
  doi: 10.1038/s41597-023-02011-7
– volume: 4
  start-page: 218
  issue: 6
  year: 1998
  ident: ref47
  article-title: Development & assessment of the global land one-km base elevation digital elevation model (GLOBE)
  publication-title: Group
– ident: ref25
  doi: 10.1002/2014GL061322
– ident: ref7
  doi: 10.1002/hyp.10929
– ident: ref24
  doi: 10.1109/IGARSS53475.2024.10642763
– ident: ref10
  doi: 10.1109/JSTARS.2020.3033591
– ident: ref41
  doi: 10.1016/j.rse.2024.114197
– ident: ref15
  doi: 10.1016/j.jag.2015.09.002
– ident: ref29
  doi: 10.1109/TGRS.2021.3115140
SSID ssj0014517
Score 2.568048
Snippet The spatial representativeness error of in situ soil moisture (SM) is recognized as a major source of uncertainty when validating satellite SM products with a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Collocation methods
Correlation coefficient
Correlation coefficients
Environmental factors
Environmental variables
Evaluation
global scale
Heterogeneity
In situ measurement
Laboratories
Land cover
Land surface
Moisture content
Northern Hemisphere
Plant cover
Reliability
Ridges
Satellites
Sea measurements
Sensors
site representativeness
Soil
Soil measurements
Soil moisture
soil moisture (SM)
Soil properties
Soil texture
Spatial discrimination
spatial heterogeneity
Spatial resolution
Surface topography
Texture
validation
Variability
Vegetation
Title Spatial Representativeness of Soil Moisture Stations and Its Influential Factors at a Global Scale
URI https://ieeexplore.ieee.org/document/10817643
https://www.proquest.com/docview/3163566399
Volume 63
WOSCitedRecordID wos001414895000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5sUdCDb7FaZQ-ehGiS3Tz2KGK1oEWsgrewjwkUSiNN6u93H6koouAtgZ0l5NvZndl5fABnItRJInUcICILGCoayAwxKEMtpNJpmWrXxPU-G43y11f-2Baru1oYI-OSz_DCPrpYvq7Uwl6VGQ3Po8wcoR3oZFnmi7U-QwYsidra6DQwXkTchjCjkF8-3z6NjSsYswtjblCWs2-HkGNV-bEVu_NlsPXPL9uGzdaQJFce-R1YwdkubHxpL7gLay69U9V7IC3zsFlp5Mklvvp6I7_Nkaok42oyJQ-VQXwxRzL20fmaiJkmw6YmQ09k4iYYeH4eIhoiiCcMIGODM-7Dy-Dm-fouaNkVAhVz1gSxlpnkOVKOXAljaMg81eadJzIWVGgaoW2PljOqeSRUZiwtxEQIhVLIUqf0ALqzaoaHQMrEOG15KXTKGUOqpNHzkkouOUs0JlEPwuXvLlTbetwyYEwL54KEvLAIFRahokWoB-efIm--78Zfg_ctJF8GejR60F-CWrSqWRc0si35rGF29IvYMazHluXXXbT0odvMF3gCq-q9mdTzU7fqPgAfPdaQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC58rKgHdV3F8dmHPQlxk3R3kj6KODo4DuLMgrfQjwoIMpFJxt9vP6K4yAreEuhqQr6u7qquxwfwW8aGc2XSCBFZxFDTSOWIURUbqbTJqsz4Jq7DfDQqHh7EXVes7mthrIxPPsMz9-hj-abWc3dVZjW8SHJ7hC7CMmcsTUK51nvQgPGkq47OIutHpF0QM4nFn8nV_dg6gyk7swYHZQX75xjyvCqfNmN_wvQ3v_ltW7DRmZLkPGD_ExZwug3rHxoMbsOKT_DUzS9QjnvYrjVy71NfQ8VR2OhIXZFx_fhEbmuL-XyGZBzi8w2RU0MGbUMGgcrET9APDD1EtkSSQBlAxhZp3IG__cvJxXXU8StEOhWsjVKjciUKpAKFltbUUEVm7LvgKpVUGpqga5BWMGpEInVubS1ELqVGJVVlMroLS9N6intAKm7dtqKSJhOMIdXKanpFlVCCcYM86UH89rtL3TUfdxwYT6V3QmJROoRKh1DZIdSD03eR59B546vBOw6SDwMDGj04fAO17JSzKWnimvI502z_P2InsHo9uR2Ww8Ho5gDWUsf5669dDmGpnc3xCH7ol_axmR37FfgKcSTZ1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Representativeness+of+Soil+Moisture+Stations+and+Its+Influential+Factors+at+a+Global+Scale&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Peng%2C+Chenchen&rft.au=Zeng%2C+Jiangyuan&rft.au=Chen%2C+Kun-Shan&rft.au=Ma%2C+Hongliang&rft.date=2025&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=63&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTGRS.2024.3523484&rft.externalDocID=10817643
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon