Graph-Based Maximum Connected-Component Learning Algorithm for Small Target Detection in Maritime Radars
Anomaly detection needs to learn one-class classifiers from normal instances in observation or feature spaces. In the Neyman–Pearson criterion, the design of one-class classifiers boils down to finding the minimal-volume decision region subject to the error probability of normal instances no larger...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on aerospace and electronic systems Jg. 61; H. 1; S. 250 - 265 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9251, 1557-9603 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Anomaly detection needs to learn one-class classifiers from normal instances in observation or feature spaces. In the Neyman–Pearson criterion, the design of one-class classifiers boils down to finding the minimal-volume decision region subject to the error probability of normal instances no larger than a desired false alarm rate. The theoretical solution to this design problem is the probability density function (pdf) level set of normal instances. In low-dimensional feature spaces, by combining training samples with the convexity regularity on decision regions, the convexhull learning algorithm is a technique for designing one-class classifiers. In order to overcome its dimension limitation and the mismatch of convexity to the level sets of a multimodal pdf, this article considers the approach to replace the convexity by the connectivity to regularize decision regions. A fast graph-based maximum connected-component learning algorithm is proposed to design one-class classifiers in high-dimensional feature spaces, which exploits the fast maximum connected-component search algorithm in a large-scale undirected graph. Moreover, for the application of sea-surface small target detection, the proposed algorithm combines ten-dimensional features to design feature-based detectors. Experimental results on the recognized radar database indicate the effectiveness of the proposed algorithm. |
|---|---|
| AbstractList | Anomaly detection needs to learn one-class classifiers from normal instances in observation or feature spaces. In the Neyman–Pearson criterion, the design of one-class classifiers boils down to finding the minimal-volume decision region subject to the error probability of normal instances no larger than a desired false alarm rate. The theoretical solution to this design problem is the probability density function (pdf) level set of normal instances. In low-dimensional feature spaces, by combining training samples with the convexity regularity on decision regions, the convexhull learning algorithm is a technique for designing one-class classifiers. In order to overcome its dimension limitation and the mismatch of convexity to the level sets of a multimodal pdf, this article considers the approach to replace the convexity by the connectivity to regularize decision regions. A fast graph-based maximum connected-component learning algorithm is proposed to design one-class classifiers in high-dimensional feature spaces, which exploits the fast maximum connected-component search algorithm in a large-scale undirected graph. Moreover, for the application of sea-surface small target detection, the proposed algorithm combines ten-dimensional features to design feature-based detectors. Experimental results on the recognized radar database indicate the effectiveness of the proposed algorithm. |
| Author | Xu, Shuwen Shui, Penglang Bai, Xiaohui Guo, Zixun |
| Author_xml | – sequence: 1 givenname: Xiaohui orcidid: 0000-0001-7936-1332 surname: Bai fullname: Bai, Xiaohui email: xhbai@stu.xidian.edu.cn organization: National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China – sequence: 2 givenname: Shuwen orcidid: 0000-0002-3557-5897 surname: Xu fullname: Xu, Shuwen email: swxu@mail.xidian.edu.cn organization: National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China – sequence: 3 givenname: Zixun orcidid: 0000-0002-7327-4382 surname: Guo fullname: Guo, Zixun email: zxguo@nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Penglang orcidid: 0000-0002-5921-5255 surname: Shui fullname: Shui, Penglang email: plshui@xidian.edu.cn organization: National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China |
| BookMark | eNp9kMtKAzEUhoMoWC8PILgIuJ6a-0yWtdYLVARb10Nm5qSNzCQ1k4K-vVPahbhwdTjwf-fnfGfo2AcPCF1RMqaU6NvlZLYYM8LEmAvB80IdoRGVMs-0IvwYjQihRaaZpKforO8_hlUUgo_Q-jGazTq7Mz00-MV8uW7b4WnwHuoETTYN3WYo8gnPwUTv_ApP2lWILq07bEPEi860LV6auIKE7yENmAseOz8cG1KuA_xmGhP7C3RiTdvD5WGeo_eH2XL6lM1fH5-nk3lWMy1SxkzFWSF1VdiC0oaDaoywggFYXQjbFFY3Fa_rXEnZ2FoqKisja6U1J6wSjJ-jm_3dTQyfW-hT-RG20Q-VJadKakE0z4cU3afqGPo-gi030XUmfpeUlDuh5U5ouRNaHoQOTP6HqV0yu3dTNK79l7zekw4AfjUprrTS_AfxM4YN |
| CODEN | IEARAX |
| CitedBy_id | crossref_primary_10_3390_jmse13040684 crossref_primary_10_1109_TIM_2025_3552815 |
| Cites_doi | 10.1109/TAES.2020.3011868 10.1109/TAP.2005.861541 10.1016/j.patcog.2020.107696 10.1109/LGRS.2021.3093620 10.1109/lsp.2019.2909584 10.1109/LGRS.2021.3133473 10.1023/b:aire.0000045502.10941.a9 10.1109/TGRS.2019.2911451 10.1109/tpami.2019.2944377 10.1109/TPAMI.2010.95 10.1145/1541880.1541882 10.1109/JSTARS.2023.3268181 10.1109/tgrs.2018.2838260 10.1109/JSTARS.2020.3033063 10.2307/2289162 10.1109/ACCESS.2019.2962793 10.1016/j.patrec.2012.06.006 10.1109/7.42092 10.1145/235815.235821 10.1002/9781119579519 10.1109/JOE.2021.3133553 10.1049/iet-rsn.2010.0198 10.1109/taes.2014.120657 10.1016/j.patcog.2020.107515 10.1109/tit.2005.856955 10.1049/el.2014.1569 10.1109/TNNLS.2018.2838140 10.1162/089976601750264965 10.1007/978-1-4757-3264-1 10.1007/978-1-4899-7502-7_912-1 10.1109/tpami.2021.3125686 10.1109/TKDE.2018.2882404 10.1109/LGRS.2019.2894385 10.1016/j.sigpro.2018.02.005 10.1007/978-3-319-47578-3 10.1007/s10115-007-0072-8 10.1109/LGRS.2019.2935262 10.1049/ip-f-2.1993.0034 10.1109/JSTARS.2023.3321998 10.1109/JSEN.2024.3350571 10.1016/j.patcog.2011.03.019 10.1049/ip-rsn:20050003 10.1016/j.dsp.2020.102707 10.1109/lgrs.2018.2852560 10.1145/362248.362272 10.1016/j.patcog.2008.05.018 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
| DOI | 10.1109/TAES.2024.3443786 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9603 |
| EndPage | 265 |
| ExternalDocumentID | 10_1109_TAES_2024_3443786 10636969 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62371382; 62071346; 62301435 funderid: 10.13039/501100001809 – fundername: China National Postdoctoral Program for Innovative Talents grantid: BX20230497 – fundername: China Postdoctoral Science Foundation grantid: 2023M732870 funderid: 10.13039/501100002858 |
| GroupedDBID | -~X 0R~ 29I 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
| ID | FETCH-LOGICAL-c294t-2ab32859b8f811d3e6da4f42eef984fd8f9db3cc7655dfc5615ba5c699302b423 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001420480700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9251 |
| IngestDate | Thu Aug 14 17:27:48 EDT 2025 Sat Nov 29 08:22:14 EST 2025 Tue Nov 18 19:37:01 EST 2025 Wed Aug 27 01:50:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-2ab32859b8f811d3e6da4f42eef984fd8f9db3cc7655dfc5615ba5c699302b423 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7327-4382 0000-0002-3557-5897 0000-0002-5921-5255 0000-0001-7936-1332 |
| PQID | 3165940937 |
| PQPubID | 85477 |
| PageCount | 16 |
| ParticipantIDs | ieee_primary_10636969 crossref_primary_10_1109_TAES_2024_3443786 crossref_citationtrail_10_1109_TAES_2024_3443786 proquest_journals_3165940937 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on aerospace and electronic systems |
| PublicationTitleAbbrev | T-AES |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 Cormen (ref24) 2001 ref38 ref19 ref18 ref46 ref23 ref45 ref26 ref48 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref21 doi: 10.1109/TAES.2020.3011868 – ident: ref36 doi: 10.1109/TAP.2005.861541 – ident: ref5 doi: 10.1016/j.patcog.2020.107696 – ident: ref38 doi: 10.1109/LGRS.2021.3093620 – ident: ref12 doi: 10.1109/lsp.2019.2909584 – ident: ref45 doi: 10.1109/LGRS.2021.3133473 – ident: ref13 doi: 10.1023/b:aire.0000045502.10941.a9 – ident: ref40 doi: 10.1109/TGRS.2019.2911451 – ident: ref4 doi: 10.1109/tpami.2019.2944377 – ident: ref29 doi: 10.1109/TPAMI.2010.95 – ident: ref2 doi: 10.1145/1541880.1541882 – ident: ref44 doi: 10.1109/JSTARS.2023.3268181 – ident: ref8 doi: 10.1109/tgrs.2018.2838260 – ident: ref46 doi: 10.1109/JSTARS.2020.3033063 – ident: ref26 doi: 10.2307/2289162 – ident: ref22 doi: 10.1109/ACCESS.2019.2962793 – ident: ref19 doi: 10.1016/j.patrec.2012.06.006 – ident: ref15 doi: 10.1109/7.42092 – ident: ref27 doi: 10.1145/235815.235821 – ident: ref33 doi: 10.1002/9781119579519 – ident: ref42 doi: 10.1109/JOE.2021.3133553 – ident: ref43 doi: 10.1049/iet-rsn.2010.0198 – ident: ref7 doi: 10.1109/taes.2014.120657 – ident: ref3 doi: 10.1016/j.patcog.2020.107515 – ident: ref16 doi: 10.1109/tit.2005.856955 – ident: ref37 doi: 10.1049/el.2014.1569 – ident: ref30 doi: 10.1109/TNNLS.2018.2838140 – ident: ref17 doi: 10.1162/089976601750264965 – ident: ref28 doi: 10.1007/978-1-4757-3264-1 – ident: ref14 doi: 10.1007/978-1-4899-7502-7_912-1 – ident: ref6 doi: 10.1109/tpami.2021.3125686 – ident: ref20 doi: 10.1109/TKDE.2018.2882404 – ident: ref11 doi: 10.1109/LGRS.2019.2894385 – ident: ref41 doi: 10.1016/j.sigpro.2018.02.005 – ident: ref1 doi: 10.1007/978-3-319-47578-3 – ident: ref32 doi: 10.1007/s10115-007-0072-8 – ident: ref10 doi: 10.1109/LGRS.2019.2935262 – start-page: 449 volume-title: Introduction to Algorithms year: 2001 ident: ref24 – ident: ref35 doi: 10.1049/ip-f-2.1993.0034 – ident: ref47 doi: 10.1109/JSTARS.2023.3321998 – ident: ref48 doi: 10.1109/JSEN.2024.3350571 – ident: ref18 doi: 10.1016/j.patcog.2011.03.019 – ident: ref34 doi: 10.1049/ip-rsn:20050003 – ident: ref39 doi: 10.1016/j.dsp.2020.102707 – ident: ref9 doi: 10.1109/lgrs.2018.2852560 – ident: ref23 doi: 10.1145/362248.362272 – ident: ref31 doi: 10.1016/j.patcog.2008.05.018 |
| SSID | ssj0014843 |
| Score | 2.4591482 |
| Snippet | Anomaly detection needs to learn one-class classifiers from normal instances in observation or feature spaces. In the Neyman–Pearson criterion, the design of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 250 |
| SubjectTerms | Algorithms Anomalies Anomaly detection Classification algorithms convexhull learning algorithm Convexity Detectors False alarms Feature extraction feature-based detection Graph theory graph-based maximum connected-component (GMCC) learning algorithm Level set Machine learning Probability density functions Radar sea-surface small target detection Search algorithms Signal processing algorithms Target detection Training |
| Title | Graph-Based Maximum Connected-Component Learning Algorithm for Small Target Detection in Maritime Radars |
| URI | https://ieeexplore.ieee.org/document/10636969 https://www.proquest.com/docview/3165940937 |
| Volume | 61 |
| WOSCitedRecordID | wos001420480700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1557-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014843 issn: 0018-9251 databaseCode: RIE dateStart: 19650101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAMcDAs4jykgcmpJQkfiQeCxRYQAiKxBY59hkqNSlqU8TPx3ZNVQmBxJbBPln5Yt938d13CJ2yXDiiC1HMDI0o5yySQgunhEkUkaB0KX2ziez-Pn95EQ-hWN3XwgCATz6Djnv0d_l6pKbuV5nd4dy1nxPLaDnLslmx1vzKgOYhRS6xO9h67XCFmcTivN_tPdlQMKUdQinJXN30ghPyXVV-HMXev1xv_nNlW2gjEEncnSG_jZag3kHrC_KCu-jtxqlRRxfWUWl8Jz8H1bTCPrNFWZ4ZuaNgVFu7OIisvuLu8HU0HjRvFbZcFj9VcjjEfZ8rjq-g8VlbNR7U1pjTQqoAP0ptI-MWer7u9S9vo9BZIVKpoE2UypI45boyN3mSaAJcS2poCmBETo3OjdAlUSrjjGmjLMdipWSKWzITp6VlYHtopbYr3EeY6pIyAzpmqaGcQA6QlYnkqeREWkNtFH-_6kIF2XHX_WJY-PAjFoVDp3DoFAGdNjqbT3mfaW78Nbjl4FgYOEOijY6-AS3CtpwUJOFM2IiWZAe_TDtEa6nr8Ovzso_QSjOewjFaVR_NYDI-8V_cF3Vo0_Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71gVQ4UKBFLG3BB05IaRO_Eh-30AeiXSG6SL1Fjj1uV9pk0TaL-PnYXrdaCYHUWw72yMoXe76JZ74B-CAqFYguZrlwPONSikwrq4ISJjNMo7GNjs0mytGour5W31KxeqyFQcSYfIaH4THe5duZWYRfZX6Hy9B-Tq3DpuCcFstyrYdLA16lJLnC72Hvt9MlZpGro_Hw5MoHg5QfMs5ZGSqnV9xQ7Kvy12EcPczp9iPX9gKeJypJhkvsX8Iadq_g2YrA4A7cngU96uzYuypLLvXvSbtoScxtMZ5pZuEwmHXeLkkyqzdkOL2ZzSf9bUs8myVXrZ5OyThmi5PP2Me8rY5MOm8sqCG1SL5r62PjXfhxejL-dJ6l3gqZoYr3GdUNC9p1TeWqorAMpdXccYroVMWdrZyyDTOmlEJYZzzLEo0WRno6k9PGc7DXsNH5Fb4Bwm3DhUObC-q4ZFghlk2hJdWSaW9oAPn9q65NEh4P_S-mdQxAclUHdOqATp3QGcDHhyk_l6ob_xu8G-BYGbhEYgD794DWaWPe1ayQQvmYlpVv_zHtPWydjy8v6osvo6978JSGfr8xS3sfNvr5Ag_gifnVT-7m7-LX9wejX9c7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph-Based+Maximum+Connected-Component+Learning+Algorithm+for+Small+Target+Detection+in+Maritime+Radars&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Bai%2C+Xiaohui&rft.au=Xu%2C+Shuwen&rft.au=Guo%2C+Zixun&rft.au=Shui%2C+Penglang&rft.date=2025-02-01&rft.pub=IEEE&rft.issn=0018-9251&rft.volume=61&rft.issue=1&rft.spage=250&rft.epage=265&rft_id=info:doi/10.1109%2FTAES.2024.3443786&rft.externalDocID=10636969 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon |