Graph-Based Maximum Connected-Component Learning Algorithm for Small Target Detection in Maritime Radars

Anomaly detection needs to learn one-class classifiers from normal instances in observation or feature spaces. In the Neyman–Pearson criterion, the design of one-class classifiers boils down to finding the minimal-volume decision region subject to the error probability of normal instances no larger...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems Jg. 61; H. 1; S. 250 - 265
Hauptverfasser: Bai, Xiaohui, Xu, Shuwen, Guo, Zixun, Shui, Penglang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9251, 1557-9603
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Anomaly detection needs to learn one-class classifiers from normal instances in observation or feature spaces. In the Neyman–Pearson criterion, the design of one-class classifiers boils down to finding the minimal-volume decision region subject to the error probability of normal instances no larger than a desired false alarm rate. The theoretical solution to this design problem is the probability density function (pdf) level set of normal instances. In low-dimensional feature spaces, by combining training samples with the convexity regularity on decision regions, the convexhull learning algorithm is a technique for designing one-class classifiers. In order to overcome its dimension limitation and the mismatch of convexity to the level sets of a multimodal pdf, this article considers the approach to replace the convexity by the connectivity to regularize decision regions. A fast graph-based maximum connected-component learning algorithm is proposed to design one-class classifiers in high-dimensional feature spaces, which exploits the fast maximum connected-component search algorithm in a large-scale undirected graph. Moreover, for the application of sea-surface small target detection, the proposed algorithm combines ten-dimensional features to design feature-based detectors. Experimental results on the recognized radar database indicate the effectiveness of the proposed algorithm.
AbstractList Anomaly detection needs to learn one-class classifiers from normal instances in observation or feature spaces. In the Neyman–Pearson criterion, the design of one-class classifiers boils down to finding the minimal-volume decision region subject to the error probability of normal instances no larger than a desired false alarm rate. The theoretical solution to this design problem is the probability density function (pdf) level set of normal instances. In low-dimensional feature spaces, by combining training samples with the convexity regularity on decision regions, the convexhull learning algorithm is a technique for designing one-class classifiers. In order to overcome its dimension limitation and the mismatch of convexity to the level sets of a multimodal pdf, this article considers the approach to replace the convexity by the connectivity to regularize decision regions. A fast graph-based maximum connected-component learning algorithm is proposed to design one-class classifiers in high-dimensional feature spaces, which exploits the fast maximum connected-component search algorithm in a large-scale undirected graph. Moreover, for the application of sea-surface small target detection, the proposed algorithm combines ten-dimensional features to design feature-based detectors. Experimental results on the recognized radar database indicate the effectiveness of the proposed algorithm.
Author Xu, Shuwen
Shui, Penglang
Bai, Xiaohui
Guo, Zixun
Author_xml – sequence: 1
  givenname: Xiaohui
  orcidid: 0000-0001-7936-1332
  surname: Bai
  fullname: Bai, Xiaohui
  email: xhbai@stu.xidian.edu.cn
  organization: National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China
– sequence: 2
  givenname: Shuwen
  orcidid: 0000-0002-3557-5897
  surname: Xu
  fullname: Xu, Shuwen
  email: swxu@mail.xidian.edu.cn
  organization: National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China
– sequence: 3
  givenname: Zixun
  orcidid: 0000-0002-7327-4382
  surname: Guo
  fullname: Guo, Zixun
  email: zxguo@nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Penglang
  orcidid: 0000-0002-5921-5255
  surname: Shui
  fullname: Shui, Penglang
  email: plshui@xidian.edu.cn
  organization: National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China
BookMark eNp9kMtKAzEUhoMoWC8PILgIuJ6a-0yWtdYLVARb10Nm5qSNzCQ1k4K-vVPahbhwdTjwf-fnfGfo2AcPCF1RMqaU6NvlZLYYM8LEmAvB80IdoRGVMs-0IvwYjQihRaaZpKforO8_hlUUgo_Q-jGazTq7Mz00-MV8uW7b4WnwHuoETTYN3WYo8gnPwUTv_ApP2lWILq07bEPEi860LV6auIKE7yENmAseOz8cG1KuA_xmGhP7C3RiTdvD5WGeo_eH2XL6lM1fH5-nk3lWMy1SxkzFWSF1VdiC0oaDaoywggFYXQjbFFY3Fa_rXEnZ2FoqKisja6U1J6wSjJ-jm_3dTQyfW-hT-RG20Q-VJadKakE0z4cU3afqGPo-gi030XUmfpeUlDuh5U5ouRNaHoQOTP6HqV0yu3dTNK79l7zekw4AfjUprrTS_AfxM4YN
CODEN IEARAX
CitedBy_id crossref_primary_10_3390_jmse13040684
crossref_primary_10_1109_TIM_2025_3552815
Cites_doi 10.1109/TAES.2020.3011868
10.1109/TAP.2005.861541
10.1016/j.patcog.2020.107696
10.1109/LGRS.2021.3093620
10.1109/lsp.2019.2909584
10.1109/LGRS.2021.3133473
10.1023/b:aire.0000045502.10941.a9
10.1109/TGRS.2019.2911451
10.1109/tpami.2019.2944377
10.1109/TPAMI.2010.95
10.1145/1541880.1541882
10.1109/JSTARS.2023.3268181
10.1109/tgrs.2018.2838260
10.1109/JSTARS.2020.3033063
10.2307/2289162
10.1109/ACCESS.2019.2962793
10.1016/j.patrec.2012.06.006
10.1109/7.42092
10.1145/235815.235821
10.1002/9781119579519
10.1109/JOE.2021.3133553
10.1049/iet-rsn.2010.0198
10.1109/taes.2014.120657
10.1016/j.patcog.2020.107515
10.1109/tit.2005.856955
10.1049/el.2014.1569
10.1109/TNNLS.2018.2838140
10.1162/089976601750264965
10.1007/978-1-4757-3264-1
10.1007/978-1-4899-7502-7_912-1
10.1109/tpami.2021.3125686
10.1109/TKDE.2018.2882404
10.1109/LGRS.2019.2894385
10.1016/j.sigpro.2018.02.005
10.1007/978-3-319-47578-3
10.1007/s10115-007-0072-8
10.1109/LGRS.2019.2935262
10.1049/ip-f-2.1993.0034
10.1109/JSTARS.2023.3321998
10.1109/JSEN.2024.3350571
10.1016/j.patcog.2011.03.019
10.1049/ip-rsn:20050003
10.1016/j.dsp.2020.102707
10.1109/lgrs.2018.2852560
10.1145/362248.362272
10.1016/j.patcog.2008.05.018
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
DOI 10.1109/TAES.2024.3443786
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9603
EndPage 265
ExternalDocumentID 10_1109_TAES_2024_3443786
10636969
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62371382; 62071346; 62301435
  funderid: 10.13039/501100001809
– fundername: China National Postdoctoral Program for Innovative Talents
  grantid: BX20230497
– fundername: China Postdoctoral Science Foundation
  grantid: 2023M732870
  funderid: 10.13039/501100002858
GroupedDBID -~X
0R~
29I
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c294t-2ab32859b8f811d3e6da4f42eef984fd8f9db3cc7655dfc5615ba5c699302b423
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001420480700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9251
IngestDate Thu Aug 14 17:27:48 EDT 2025
Sat Nov 29 08:22:14 EST 2025
Tue Nov 18 19:37:01 EST 2025
Wed Aug 27 01:50:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-2ab32859b8f811d3e6da4f42eef984fd8f9db3cc7655dfc5615ba5c699302b423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7327-4382
0000-0002-3557-5897
0000-0002-5921-5255
0000-0001-7936-1332
PQID 3165940937
PQPubID 85477
PageCount 16
ParticipantIDs ieee_primary_10636969
crossref_primary_10_1109_TAES_2024_3443786
crossref_citationtrail_10_1109_TAES_2024_3443786
proquest_journals_3165940937
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on aerospace and electronic systems
PublicationTitleAbbrev T-AES
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
Cormen (ref24) 2001
ref38
ref19
ref18
ref46
ref23
ref45
ref26
ref48
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref21
  doi: 10.1109/TAES.2020.3011868
– ident: ref36
  doi: 10.1109/TAP.2005.861541
– ident: ref5
  doi: 10.1016/j.patcog.2020.107696
– ident: ref38
  doi: 10.1109/LGRS.2021.3093620
– ident: ref12
  doi: 10.1109/lsp.2019.2909584
– ident: ref45
  doi: 10.1109/LGRS.2021.3133473
– ident: ref13
  doi: 10.1023/b:aire.0000045502.10941.a9
– ident: ref40
  doi: 10.1109/TGRS.2019.2911451
– ident: ref4
  doi: 10.1109/tpami.2019.2944377
– ident: ref29
  doi: 10.1109/TPAMI.2010.95
– ident: ref2
  doi: 10.1145/1541880.1541882
– ident: ref44
  doi: 10.1109/JSTARS.2023.3268181
– ident: ref8
  doi: 10.1109/tgrs.2018.2838260
– ident: ref46
  doi: 10.1109/JSTARS.2020.3033063
– ident: ref26
  doi: 10.2307/2289162
– ident: ref22
  doi: 10.1109/ACCESS.2019.2962793
– ident: ref19
  doi: 10.1016/j.patrec.2012.06.006
– ident: ref15
  doi: 10.1109/7.42092
– ident: ref27
  doi: 10.1145/235815.235821
– ident: ref33
  doi: 10.1002/9781119579519
– ident: ref42
  doi: 10.1109/JOE.2021.3133553
– ident: ref43
  doi: 10.1049/iet-rsn.2010.0198
– ident: ref7
  doi: 10.1109/taes.2014.120657
– ident: ref3
  doi: 10.1016/j.patcog.2020.107515
– ident: ref16
  doi: 10.1109/tit.2005.856955
– ident: ref37
  doi: 10.1049/el.2014.1569
– ident: ref30
  doi: 10.1109/TNNLS.2018.2838140
– ident: ref17
  doi: 10.1162/089976601750264965
– ident: ref28
  doi: 10.1007/978-1-4757-3264-1
– ident: ref14
  doi: 10.1007/978-1-4899-7502-7_912-1
– ident: ref6
  doi: 10.1109/tpami.2021.3125686
– ident: ref20
  doi: 10.1109/TKDE.2018.2882404
– ident: ref11
  doi: 10.1109/LGRS.2019.2894385
– ident: ref41
  doi: 10.1016/j.sigpro.2018.02.005
– ident: ref1
  doi: 10.1007/978-3-319-47578-3
– ident: ref32
  doi: 10.1007/s10115-007-0072-8
– ident: ref10
  doi: 10.1109/LGRS.2019.2935262
– start-page: 449
  volume-title: Introduction to Algorithms
  year: 2001
  ident: ref24
– ident: ref35
  doi: 10.1049/ip-f-2.1993.0034
– ident: ref47
  doi: 10.1109/JSTARS.2023.3321998
– ident: ref48
  doi: 10.1109/JSEN.2024.3350571
– ident: ref18
  doi: 10.1016/j.patcog.2011.03.019
– ident: ref34
  doi: 10.1049/ip-rsn:20050003
– ident: ref39
  doi: 10.1016/j.dsp.2020.102707
– ident: ref9
  doi: 10.1109/lgrs.2018.2852560
– ident: ref23
  doi: 10.1145/362248.362272
– ident: ref31
  doi: 10.1016/j.patcog.2008.05.018
SSID ssj0014843
Score 2.4591482
Snippet Anomaly detection needs to learn one-class classifiers from normal instances in observation or feature spaces. In the Neyman–Pearson criterion, the design of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 250
SubjectTerms Algorithms
Anomalies
Anomaly detection
Classification algorithms
convexhull learning algorithm
Convexity
Detectors
False alarms
Feature extraction
feature-based detection
Graph theory
graph-based maximum connected-component (GMCC) learning algorithm
Level set
Machine learning
Probability density functions
Radar
sea-surface small target detection
Search algorithms
Signal processing algorithms
Target detection
Training
Title Graph-Based Maximum Connected-Component Learning Algorithm for Small Target Detection in Maritime Radars
URI https://ieeexplore.ieee.org/document/10636969
https://www.proquest.com/docview/3165940937
Volume 61
WOSCitedRecordID wos001420480700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1557-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014843
  issn: 0018-9251
  databaseCode: RIE
  dateStart: 19650101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAMcDAs4jykgcmpJQkfiQeCxRYQAiKxBY59hkqNSlqU8TPx3ZNVQmBxJbBPln5Yt938d13CJ2yXDiiC1HMDI0o5yySQgunhEkUkaB0KX2ziez-Pn95EQ-hWN3XwgCATz6Djnv0d_l6pKbuV5nd4dy1nxPLaDnLslmx1vzKgOYhRS6xO9h67XCFmcTivN_tPdlQMKUdQinJXN30ghPyXVV-HMXev1xv_nNlW2gjEEncnSG_jZag3kHrC_KCu-jtxqlRRxfWUWl8Jz8H1bTCPrNFWZ4ZuaNgVFu7OIisvuLu8HU0HjRvFbZcFj9VcjjEfZ8rjq-g8VlbNR7U1pjTQqoAP0ptI-MWer7u9S9vo9BZIVKpoE2UypI45boyN3mSaAJcS2poCmBETo3OjdAlUSrjjGmjLMdipWSKWzITp6VlYHtopbYr3EeY6pIyAzpmqaGcQA6QlYnkqeREWkNtFH-_6kIF2XHX_WJY-PAjFoVDp3DoFAGdNjqbT3mfaW78Nbjl4FgYOEOijY6-AS3CtpwUJOFM2IiWZAe_TDtEa6nr8Ovzso_QSjOewjFaVR_NYDI-8V_cF3Vo0_Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71gVQ4UKBFLG3BB05IaRO_Eh-30AeiXSG6SL1Fjj1uV9pk0TaL-PnYXrdaCYHUWw72yMoXe76JZ74B-CAqFYguZrlwPONSikwrq4ISJjNMo7GNjs0mytGour5W31KxeqyFQcSYfIaH4THe5duZWYRfZX6Hy9B-Tq3DpuCcFstyrYdLA16lJLnC72Hvt9MlZpGro_Hw5MoHg5QfMs5ZGSqnV9xQ7Kvy12EcPczp9iPX9gKeJypJhkvsX8Iadq_g2YrA4A7cngU96uzYuypLLvXvSbtoScxtMZ5pZuEwmHXeLkkyqzdkOL2ZzSf9bUs8myVXrZ5OyThmi5PP2Me8rY5MOm8sqCG1SL5r62PjXfhxejL-dJ6l3gqZoYr3GdUNC9p1TeWqorAMpdXccYroVMWdrZyyDTOmlEJYZzzLEo0WRno6k9PGc7DXsNH5Fb4Bwm3DhUObC-q4ZFghlk2hJdWSaW9oAPn9q65NEh4P_S-mdQxAclUHdOqATp3QGcDHhyk_l6ob_xu8G-BYGbhEYgD794DWaWPe1ayQQvmYlpVv_zHtPWydjy8v6osvo6978JSGfr8xS3sfNvr5Ag_gifnVT-7m7-LX9wejX9c7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph-Based+Maximum+Connected-Component+Learning+Algorithm+for+Small+Target+Detection+in+Maritime+Radars&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Bai%2C+Xiaohui&rft.au=Xu%2C+Shuwen&rft.au=Guo%2C+Zixun&rft.au=Shui%2C+Penglang&rft.date=2025-02-01&rft.pub=IEEE&rft.issn=0018-9251&rft.volume=61&rft.issue=1&rft.spage=250&rft.epage=265&rft_id=info:doi/10.1109%2FTAES.2024.3443786&rft.externalDocID=10636969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon