A Parallel Direct Finite Element Solver Empowered by Machine Learning for Solving Large-Scale Electromagnetic Problems
In this communication, a parallel direct finite element solver is proposed for solving complex electromagnetic problems. Our proposed solver features adaptive fill-reducing ordering and highly assembled lazy offloading (HALO) factorization. In our adaptive fill-reducing ordering approach, we propose...
Saved in:
| Published in: | IEEE transactions on antennas and propagation Vol. 73; no. 4; pp. 2690 - 2695 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-926X, 1558-2221 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this communication, a parallel direct finite element solver is proposed for solving complex electromagnetic problems. Our proposed solver features adaptive fill-reducing ordering and highly assembled lazy offloading (HALO) factorization. In our adaptive fill-reducing ordering approach, we propose a graph convolutional network (GCN) model that adaptively selects the optimal fill-reducing ordering method for each electromagnetic problem. Furthermore, we propose a graph sampling training algorithm to enhance the scalability of the GCN model. In our HALO factorization approach, we focus on small irregular level-1 BLAS (BLAS-1) and level-2 BLAS (BLAS-2) subproblems for the supernode factorization and panel update steps, aggregate unstructured L and U factors stored in vector format into structured dense blocks stored in matrix format, assemble these small irregular BLAS-1 and BLAS-2 subproblems into highly assembled level-3 BLAS (BLAS-3) problems that are well-suited for the parallelism of various dedicated manycore accelerators, and propose a lazy offloading technique to achieve high computational efficiency and low data transfer overhead. Our numerical results demonstrate that our proposed method exhibits high accuracy and significant performance improvement for a variety of complex electromagnetic problems and arbitrarily shaped radiating and coupling objects. Moreover, our proposed solver can achieve a <inline-formula> <tex-math notation="LaTeX">4.25 \times </tex-math></inline-formula> speedup in comparison to the state-of-the-art swSuperLU on Sunway manycore computing systems, which is an unprecedented performance gain for the direct finite element solver on dedicated manycore accelerators. |
|---|---|
| AbstractList | In this communication, a parallel direct finite element solver is proposed for solving complex electromagnetic problems. Our proposed solver features adaptive fill-reducing ordering and highly assembled lazy offloading (HALO) factorization. In our adaptive fill-reducing ordering approach, we propose a graph convolutional network (GCN) model that adaptively selects the optimal fill-reducing ordering method for each electromagnetic problem. Furthermore, we propose a graph sampling training algorithm to enhance the scalability of the GCN model. In our HALO factorization approach, we focus on small irregular level-1 BLAS (BLAS-1) and level-2 BLAS (BLAS-2) subproblems for the supernode factorization and panel update steps, aggregate unstructured L and U factors stored in vector format into structured dense blocks stored in matrix format, assemble these small irregular BLAS-1 and BLAS-2 subproblems into highly assembled level-3 BLAS (BLAS-3) problems that are well-suited for the parallelism of various dedicated manycore accelerators, and propose a lazy offloading technique to achieve high computational efficiency and low data transfer overhead. Our numerical results demonstrate that our proposed method exhibits high accuracy and significant performance improvement for a variety of complex electromagnetic problems and arbitrarily shaped radiating and coupling objects. Moreover, our proposed solver can achieve a <inline-formula> <tex-math notation="LaTeX">4.25 \times </tex-math></inline-formula> speedup in comparison to the state-of-the-art swSuperLU on Sunway manycore computing systems, which is an unprecedented performance gain for the direct finite element solver on dedicated manycore accelerators. In this communication, a parallel direct finite element solver is proposed for solving complex electromagnetic problems. Our proposed solver features adaptive fill-reducing ordering and highly assembled lazy offloading (HALO) factorization. In our adaptive fill-reducing ordering approach, we propose a graph convolutional network (GCN) model that adaptively selects the optimal fill-reducing ordering method for each electromagnetic problem. Furthermore, we propose a graph sampling training algorithm to enhance the scalability of the GCN model. In our HALO factorization approach, we focus on small irregular level-1 BLAS (BLAS-1) and level-2 BLAS (BLAS-2) subproblems for the supernode factorization and panel update steps, aggregate unstructured L and U factors stored in vector format into structured dense blocks stored in matrix format, assemble these small irregular BLAS-1 and BLAS-2 subproblems into highly assembled level-3 BLAS (BLAS-3) problems that are well-suited for the parallelism of various dedicated manycore accelerators, and propose a lazy offloading technique to achieve high computational efficiency and low data transfer overhead. Our numerical results demonstrate that our proposed method exhibits high accuracy and significant performance improvement for a variety of complex electromagnetic problems and arbitrarily shaped radiating and coupling objects. Moreover, our proposed solver can achieve a [Formula Omitted] speedup in comparison to the state-of-the-art swSuperLU on Sunway manycore computing systems, which is an unprecedented performance gain for the direct finite element solver on dedicated manycore accelerators. |
| Author | Zhao, Xunwang Tian, Min Zuo, Sheng Lin, Zhongchao Zhang, Yu Wang, Junjie |
| Author_xml | – sequence: 1 givenname: Junjie orcidid: 0000-0002-0199-1956 surname: Wang fullname: Wang, Junjie organization: Shaanxi Key Laboratory of Large Scale Electromagnetic Computing, Shaanxi Innovation Center for High Performance CAE Software, Xidian University, Xi'an, China – sequence: 2 givenname: Sheng orcidid: 0000-0002-1099-7743 surname: Zuo fullname: Zuo, Sheng email: zuosheng0503@163.com organization: Shaanxi Key Laboratory of Large Scale Electromagnetic Computing, Shaanxi Innovation Center for High Performance CAE Software, Xidian University, Xi'an, China – sequence: 3 givenname: Xunwang orcidid: 0000-0001-6560-6781 surname: Zhao fullname: Zhao, Xunwang organization: Shaanxi Key Laboratory of Large Scale Electromagnetic Computing, Shaanxi Innovation Center for High Performance CAE Software, Xidian University, Xi'an, China – sequence: 4 givenname: Min orcidid: 0009-0000-9930-4802 surname: Tian fullname: Tian, Min organization: Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China – sequence: 5 givenname: Zhongchao orcidid: 0000-0002-9219-7992 surname: Lin fullname: Lin, Zhongchao organization: Shaanxi Key Laboratory of Large Scale Electromagnetic Computing, Shaanxi Innovation Center for High Performance CAE Software, Xidian University, Xi'an, China – sequence: 6 givenname: Yu orcidid: 0000-0002-6024-9858 surname: Zhang fullname: Zhang, Yu organization: Shaanxi Key Laboratory of Large Scale Electromagnetic Computing, Shaanxi Innovation Center for High Performance CAE Software, Xidian University, Xi'an, China |
| BookMark | eNp9kc1PAjEQxRuDiYDePXho4nmxXwvdI0FQE4wkYOJt0y1TLFla7BYM_727wMF48DRvkvfeJL_poJbzDhC6paRHKckeFsNZjxGW9ngqqJT8ArVpmsqEMUZbqE0IlUnG-h9XqFNV63oVUog22g_xTAVVllDiRxtARzyxzkbA4xI24CKe-3IPAY83W_8NAZa4OOBXpT-tAzwFFZx1K2x8OBobPVVhBclcq_JYomPwG7VyEK3Gs-CLure6RpdGlRXcnGcXvU_Gi9FzMn17ehkNp4lmmYgJk3yZZloaY0ShjWw0CMqY4QWVS0E0LAmQwhBDBsChz0hayIFhhdRSccG76P7Uuw3-awdVzNd-F1x9Muc1Jcr5IBvUrv7JpYOvqgAm1zaqaL2LQdkypyRvGOc147xhnJ8Z10HyJ7gNdqPC4b_I3SliAeCXPasflFL-AwY5ik4 |
| CODEN | IETPAK |
| CitedBy_id | crossref_primary_10_3390_app15095130 |
| Cites_doi | 10.1137/1.9780898718003 10.1137/S0895479894278952 10.1145/3577197 10.1137/s0895479895291765 10.1007/bfb0064460 10.1016/j.future.2003.07.011 10.1109/SC.1998.10030 10.1002/(SICI)1099-1204(200003/06)13:2/3<261::AID-JNM360>3.0.CO;2-L 10.1609/aaai.v33i01.33014602 10.1002/9780470874257 10.1109/SC.1998.10018 10.1109/TAP.2022.3216554 10.1109/TNNLS.2020.2978386 10.1007/s11227-021-04270-w 10.1007/3-540-70734-4_16 10.1137/0602010 10.1145/779359.779361 10.1145/214392.214398 10.1137/1.9780898718881 10.1007/3-540-44520-X_39 10.1109/PROC.1967.6011 10.1177/10943420241268200 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TAP.2025.3541883 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2221 |
| EndPage | 2695 |
| ExternalDocumentID | 10_1109_TAP_2025_3541883 10901851 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Key Research and Development Program of Shaanxi grantid: 2021GXLH-02; 2023-ZDLGY44; 2022ZDLGY02-09; 2022ZDLGY02-02 funderid: 10.13039/100016692 – fundername: Fundamental Research Funds for the Central Universities grantid: QTZX23018 funderid: 10.13039/501100012226 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 97E AAJGR AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 VJK VOH AAYXX CITATION 7SP 8FD AARMG L7M |
| ID | FETCH-LOGICAL-c294t-283d59c8fff4bcf859c8e4122f3b18d40ced0e0bf0f07e3e6205b87f2b8c8a343 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001464463100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-926X |
| IngestDate | Mon Jun 30 10:13:03 EDT 2025 Sat Nov 29 06:51:04 EST 2025 Tue Nov 18 21:53:43 EST 2025 Wed Nov 19 08:27:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-283d59c8fff4bcf859c8e4122f3b18d40ced0e0bf0f07e3e6205b87f2b8c8a343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6024-9858 0000-0002-1099-7743 0000-0001-6560-6781 0000-0002-0199-1956 0000-0002-9219-7992 0009-0000-9930-4802 |
| PQID | 3188133797 |
| PQPubID | 85476 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_3188133797 crossref_citationtrail_10_1109_TAP_2025_3541883 ieee_primary_10901851 crossref_primary_10_1109_TAP_2025_3541883 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on antennas and propagation |
| PublicationTitleAbbrev | TAP |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref23 ref15 ref14 ref11 ref22 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 Zeng (ref20) 2019 ref6 ref5 |
| References_xml | – ident: ref5 doi: 10.1137/1.9780898718003 – ident: ref10 doi: 10.1137/S0895479894278952 – ident: ref15 doi: 10.1145/3577197 – ident: ref13 doi: 10.1137/s0895479895291765 – ident: ref8 doi: 10.1007/bfb0064460 – ident: ref16 doi: 10.1016/j.future.2003.07.011 – ident: ref21 doi: 10.1109/SC.1998.10030 – ident: ref2 doi: 10.1002/(SICI)1099-1204(200003/06)13:2/3<261::AID-JNM360>3.0.CO;2-L – ident: ref19 doi: 10.1609/aaai.v33i01.33014602 – ident: ref1 doi: 10.1002/9780470874257 – ident: ref11 doi: 10.1109/SC.1998.10018 – ident: ref3 doi: 10.1109/TAP.2022.3216554 – ident: ref18 doi: 10.1109/TNNLS.2020.2978386 – ident: ref23 doi: 10.1007/s11227-021-04270-w – ident: ref17 doi: 10.1007/3-540-70734-4_16 – ident: ref6 doi: 10.1137/0602010 – ident: ref14 doi: 10.1145/779359.779361 – ident: ref9 doi: 10.1145/214392.214398 – ident: ref4 doi: 10.1137/1.9780898718881 – ident: ref12 doi: 10.1007/3-540-44520-X_39 – year: 2019 ident: ref20 article-title: GraphSAINT: Graph sampling based inductive learning method publication-title: arXiv:1907.04931 – ident: ref7 doi: 10.1109/PROC.1967.6011 – ident: ref22 doi: 10.1177/10943420241268200 |
| SSID | ssj0014844 |
| Score | 2.4717681 |
| Snippet | In this communication, a parallel direct finite element solver is proposed for solving complex electromagnetic problems. Our proposed solver features adaptive... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2690 |
| SubjectTerms | Accelerators Aggregates Algorithms Antennas and propagation Artificial neural networks Complex structures Data transfer (computers) Electromagnetics Factorization Feature extraction Finite element analysis finite element method (FEM) Format graph convolutional network (GCN) Graph convolutional networks large-scale parallel algorithm Machine learning manycore architecture Parallel processing radiation problems Solvers Sparse matrices Sunway computing systems supernodal factorization algorithm Training Vectors |
| Title | A Parallel Direct Finite Element Solver Empowered by Machine Learning for Solving Large-Scale Electromagnetic Problems |
| URI | https://ieeexplore.ieee.org/document/10901851 https://www.proquest.com/docview/3188133797 |
| Volume | 73 |
| WOSCitedRecordID | wos001464463100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2221 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014844 issn: 0018-926X databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA4qHvTgWrFu5ODFw7SZTGaSHIu0eKhScKG3Icm8lIK20lbBf2-WaVFEwVsOSRjmm7xl8r33IXTJNRVCkypJraoS56FtosCwxDk_KjUtMh1aKT31-d2dGA7loC5WD7UwABDIZ9Dyw3CXX03Nm_9V1vYkQudfXLKzznkRi7VWVwZMsNhyOXUnmBbD5Z0kke2HzsBlgjRvZTlLhci--aAgqvLDEgf30tv954PtoZ06jsSdCPw-WoPJAdr-0l3wEL138EDNvFbKM46WDffGPsTE3cgZx_dTz4vG3ZdXr5UGFdYf-DawKwHXjVdH2EW1YaIf9z1vPLl3uIZNvIDOixpNfCEkHkRpmnkDPfa6D9c3SS2zkBgq2SJxAUaVSyOstUwbK_wYWEqpzXQqKkYMVASItsQSDhkUlORacEu1MEJlLDtCG5PpBI4RVpVw6WQBLqmhjANTOqdKKi1yZlVmZRO1ly--NHUPci-F8VyGXITI0kFVeqjKGqomulqteI39N_6Y2_DQfJkXUWmisyW4ZX1C56WzZcLl51zyk1-WnaItv3uk6ZyhjcXsDc7RpnlfjOezi_DxfQLdz9ei |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SBfXgW6zPHLx42DabzXaTY5EWxbYUWqW3JclOiqCttFXw35vHVhRR8JZDsrvst8nM7HwzH0KXmaKcK1JEsZFFZC20iSRoFlnjR4WijUT5VkoPnazX46OR6JfF6r4WBgA8-Qxqbuhz-cVUv7pfZXVHIrT2xQY7qyljlIRyrc-kAeMsNF2O7R6mjdEyK0lEfdjs21iQprUkZTHnyTcr5GVVfpzF3sC0t__5aDtoq_QkcTNAv4tWYLKHNr_0F9xHb03clzOnlvKEw9mG24_OycStwBrHg6ljRuPW84tTS4MCq3fc9fxKwGXr1TG2fq2f6MYdxxyPBhZZfxEnofMsxxNXCon7QZxmfoDu263h9U1UCi1Emgq2iKyLUaRCc2MMU9pwNwYWU2oSFfOCEQ0FAaIMMSSDBBqUpIpnhiquuUxYcogqk-kEjhCWBbcBZQNsWENZBkyqlEohFU-ZkYkRVVRfvvhcl13InRjGU-6jESJyC1XuoMpLqKro6nPFS-jA8cfcAwfNl3kBlSo6XYKbl3t0ntvTjNsIPRPZ8S_LLtD6zbDbyTu3vbsTtOHuFEg7p6iymL3CGVrTb4vH-ezcf4gfPATa6Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Parallel+Direct+Finite+Element+Solver+Empowered+by+Machine+Learning+for+Solving+Large-Scale+Electromagnetic+Problems&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Wang%2C+Junjie&rft.au=Zuo%2C+Sheng&rft.au=Zhao%2C+Xunwang&rft.au=Tian%2C+Min&rft.date=2025-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-926X&rft.eissn=1558-2221&rft.volume=73&rft.issue=4&rft.spage=2690&rft_id=info:doi/10.1109%2FTAP.2025.3541883&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon |