A Parallel Direct Finite Element Solver Empowered by Machine Learning for Solving Large-Scale Electromagnetic Problems

In this communication, a parallel direct finite element solver is proposed for solving complex electromagnetic problems. Our proposed solver features adaptive fill-reducing ordering and highly assembled lazy offloading (HALO) factorization. In our adaptive fill-reducing ordering approach, we propose...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation Vol. 73; no. 4; pp. 2690 - 2695
Main Authors: Wang, Junjie, Zuo, Sheng, Zhao, Xunwang, Tian, Min, Lin, Zhongchao, Zhang, Yu
Format: Journal Article
Language:English
Published: New York IEEE 01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-926X, 1558-2221
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this communication, a parallel direct finite element solver is proposed for solving complex electromagnetic problems. Our proposed solver features adaptive fill-reducing ordering and highly assembled lazy offloading (HALO) factorization. In our adaptive fill-reducing ordering approach, we propose a graph convolutional network (GCN) model that adaptively selects the optimal fill-reducing ordering method for each electromagnetic problem. Furthermore, we propose a graph sampling training algorithm to enhance the scalability of the GCN model. In our HALO factorization approach, we focus on small irregular level-1 BLAS (BLAS-1) and level-2 BLAS (BLAS-2) subproblems for the supernode factorization and panel update steps, aggregate unstructured L and U factors stored in vector format into structured dense blocks stored in matrix format, assemble these small irregular BLAS-1 and BLAS-2 subproblems into highly assembled level-3 BLAS (BLAS-3) problems that are well-suited for the parallelism of various dedicated manycore accelerators, and propose a lazy offloading technique to achieve high computational efficiency and low data transfer overhead. Our numerical results demonstrate that our proposed method exhibits high accuracy and significant performance improvement for a variety of complex electromagnetic problems and arbitrarily shaped radiating and coupling objects. Moreover, our proposed solver can achieve a <inline-formula> <tex-math notation="LaTeX">4.25 \times </tex-math></inline-formula> speedup in comparison to the state-of-the-art swSuperLU on Sunway manycore computing systems, which is an unprecedented performance gain for the direct finite element solver on dedicated manycore accelerators.
AbstractList In this communication, a parallel direct finite element solver is proposed for solving complex electromagnetic problems. Our proposed solver features adaptive fill-reducing ordering and highly assembled lazy offloading (HALO) factorization. In our adaptive fill-reducing ordering approach, we propose a graph convolutional network (GCN) model that adaptively selects the optimal fill-reducing ordering method for each electromagnetic problem. Furthermore, we propose a graph sampling training algorithm to enhance the scalability of the GCN model. In our HALO factorization approach, we focus on small irregular level-1 BLAS (BLAS-1) and level-2 BLAS (BLAS-2) subproblems for the supernode factorization and panel update steps, aggregate unstructured L and U factors stored in vector format into structured dense blocks stored in matrix format, assemble these small irregular BLAS-1 and BLAS-2 subproblems into highly assembled level-3 BLAS (BLAS-3) problems that are well-suited for the parallelism of various dedicated manycore accelerators, and propose a lazy offloading technique to achieve high computational efficiency and low data transfer overhead. Our numerical results demonstrate that our proposed method exhibits high accuracy and significant performance improvement for a variety of complex electromagnetic problems and arbitrarily shaped radiating and coupling objects. Moreover, our proposed solver can achieve a [Formula Omitted] speedup in comparison to the state-of-the-art swSuperLU on Sunway manycore computing systems, which is an unprecedented performance gain for the direct finite element solver on dedicated manycore accelerators.
In this communication, a parallel direct finite element solver is proposed for solving complex electromagnetic problems. Our proposed solver features adaptive fill-reducing ordering and highly assembled lazy offloading (HALO) factorization. In our adaptive fill-reducing ordering approach, we propose a graph convolutional network (GCN) model that adaptively selects the optimal fill-reducing ordering method for each electromagnetic problem. Furthermore, we propose a graph sampling training algorithm to enhance the scalability of the GCN model. In our HALO factorization approach, we focus on small irregular level-1 BLAS (BLAS-1) and level-2 BLAS (BLAS-2) subproblems for the supernode factorization and panel update steps, aggregate unstructured L and U factors stored in vector format into structured dense blocks stored in matrix format, assemble these small irregular BLAS-1 and BLAS-2 subproblems into highly assembled level-3 BLAS (BLAS-3) problems that are well-suited for the parallelism of various dedicated manycore accelerators, and propose a lazy offloading technique to achieve high computational efficiency and low data transfer overhead. Our numerical results demonstrate that our proposed method exhibits high accuracy and significant performance improvement for a variety of complex electromagnetic problems and arbitrarily shaped radiating and coupling objects. Moreover, our proposed solver can achieve a <inline-formula> <tex-math notation="LaTeX">4.25 \times </tex-math></inline-formula> speedup in comparison to the state-of-the-art swSuperLU on Sunway manycore computing systems, which is an unprecedented performance gain for the direct finite element solver on dedicated manycore accelerators.
Author Zhao, Xunwang
Tian, Min
Zuo, Sheng
Lin, Zhongchao
Zhang, Yu
Wang, Junjie
Author_xml – sequence: 1
  givenname: Junjie
  orcidid: 0000-0002-0199-1956
  surname: Wang
  fullname: Wang, Junjie
  organization: Shaanxi Key Laboratory of Large Scale Electromagnetic Computing, Shaanxi Innovation Center for High Performance CAE Software, Xidian University, Xi'an, China
– sequence: 2
  givenname: Sheng
  orcidid: 0000-0002-1099-7743
  surname: Zuo
  fullname: Zuo, Sheng
  email: zuosheng0503@163.com
  organization: Shaanxi Key Laboratory of Large Scale Electromagnetic Computing, Shaanxi Innovation Center for High Performance CAE Software, Xidian University, Xi'an, China
– sequence: 3
  givenname: Xunwang
  orcidid: 0000-0001-6560-6781
  surname: Zhao
  fullname: Zhao, Xunwang
  organization: Shaanxi Key Laboratory of Large Scale Electromagnetic Computing, Shaanxi Innovation Center for High Performance CAE Software, Xidian University, Xi'an, China
– sequence: 4
  givenname: Min
  orcidid: 0009-0000-9930-4802
  surname: Tian
  fullname: Tian, Min
  organization: Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
– sequence: 5
  givenname: Zhongchao
  orcidid: 0000-0002-9219-7992
  surname: Lin
  fullname: Lin, Zhongchao
  organization: Shaanxi Key Laboratory of Large Scale Electromagnetic Computing, Shaanxi Innovation Center for High Performance CAE Software, Xidian University, Xi'an, China
– sequence: 6
  givenname: Yu
  orcidid: 0000-0002-6024-9858
  surname: Zhang
  fullname: Zhang, Yu
  organization: Shaanxi Key Laboratory of Large Scale Electromagnetic Computing, Shaanxi Innovation Center for High Performance CAE Software, Xidian University, Xi'an, China
BookMark eNp9kc1PAjEQxRuDiYDePXho4nmxXwvdI0FQE4wkYOJt0y1TLFla7BYM_727wMF48DRvkvfeJL_poJbzDhC6paRHKckeFsNZjxGW9ngqqJT8ArVpmsqEMUZbqE0IlUnG-h9XqFNV63oVUog22g_xTAVVllDiRxtARzyxzkbA4xI24CKe-3IPAY83W_8NAZa4OOBXpT-tAzwFFZx1K2x8OBobPVVhBclcq_JYomPwG7VyEK3Gs-CLure6RpdGlRXcnGcXvU_Gi9FzMn17ehkNp4lmmYgJk3yZZloaY0ShjWw0CMqY4QWVS0E0LAmQwhBDBsChz0hayIFhhdRSccG76P7Uuw3-awdVzNd-F1x9Muc1Jcr5IBvUrv7JpYOvqgAm1zaqaL2LQdkypyRvGOc147xhnJ8Z10HyJ7gNdqPC4b_I3SliAeCXPasflFL-AwY5ik4
CODEN IETPAK
CitedBy_id crossref_primary_10_3390_app15095130
Cites_doi 10.1137/1.9780898718003
10.1137/S0895479894278952
10.1145/3577197
10.1137/s0895479895291765
10.1007/bfb0064460
10.1016/j.future.2003.07.011
10.1109/SC.1998.10030
10.1002/(SICI)1099-1204(200003/06)13:2/3<261::AID-JNM360>3.0.CO;2-L
10.1609/aaai.v33i01.33014602
10.1002/9780470874257
10.1109/SC.1998.10018
10.1109/TAP.2022.3216554
10.1109/TNNLS.2020.2978386
10.1007/s11227-021-04270-w
10.1007/3-540-70734-4_16
10.1137/0602010
10.1145/779359.779361
10.1145/214392.214398
10.1137/1.9780898718881
10.1007/3-540-44520-X_39
10.1109/PROC.1967.6011
10.1177/10943420241268200
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TAP.2025.3541883
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2221
EndPage 2695
ExternalDocumentID 10_1109_TAP_2025_3541883
10901851
Genre orig-research
GrantInformation_xml – fundername: Key Research and Development Program of Shaanxi
  grantid: 2021GXLH-02; 2023-ZDLGY44; 2022ZDLGY02-09; 2022ZDLGY02-02
  funderid: 10.13039/100016692
– fundername: Fundamental Research Funds for the Central Universities
  grantid: QTZX23018
  funderid: 10.13039/501100012226
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
7SP
8FD
AARMG
L7M
ID FETCH-LOGICAL-c294t-283d59c8fff4bcf859c8e4122f3b18d40ced0e0bf0f07e3e6205b87f2b8c8a343
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001464463100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-926X
IngestDate Mon Jun 30 10:13:03 EDT 2025
Sat Nov 29 06:51:04 EST 2025
Tue Nov 18 21:53:43 EST 2025
Wed Nov 19 08:27:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-283d59c8fff4bcf859c8e4122f3b18d40ced0e0bf0f07e3e6205b87f2b8c8a343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6024-9858
0000-0002-1099-7743
0000-0001-6560-6781
0000-0002-0199-1956
0000-0002-9219-7992
0009-0000-9930-4802
PQID 3188133797
PQPubID 85476
PageCount 6
ParticipantIDs proquest_journals_3188133797
crossref_citationtrail_10_1109_TAP_2025_3541883
ieee_primary_10901851
crossref_primary_10_1109_TAP_2025_3541883
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on antennas and propagation
PublicationTitleAbbrev TAP
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref23
ref15
ref14
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
Zeng (ref20) 2019
ref6
ref5
References_xml – ident: ref5
  doi: 10.1137/1.9780898718003
– ident: ref10
  doi: 10.1137/S0895479894278952
– ident: ref15
  doi: 10.1145/3577197
– ident: ref13
  doi: 10.1137/s0895479895291765
– ident: ref8
  doi: 10.1007/bfb0064460
– ident: ref16
  doi: 10.1016/j.future.2003.07.011
– ident: ref21
  doi: 10.1109/SC.1998.10030
– ident: ref2
  doi: 10.1002/(SICI)1099-1204(200003/06)13:2/3<261::AID-JNM360>3.0.CO;2-L
– ident: ref19
  doi: 10.1609/aaai.v33i01.33014602
– ident: ref1
  doi: 10.1002/9780470874257
– ident: ref11
  doi: 10.1109/SC.1998.10018
– ident: ref3
  doi: 10.1109/TAP.2022.3216554
– ident: ref18
  doi: 10.1109/TNNLS.2020.2978386
– ident: ref23
  doi: 10.1007/s11227-021-04270-w
– ident: ref17
  doi: 10.1007/3-540-70734-4_16
– ident: ref6
  doi: 10.1137/0602010
– ident: ref14
  doi: 10.1145/779359.779361
– ident: ref9
  doi: 10.1145/214392.214398
– ident: ref4
  doi: 10.1137/1.9780898718881
– ident: ref12
  doi: 10.1007/3-540-44520-X_39
– year: 2019
  ident: ref20
  article-title: GraphSAINT: Graph sampling based inductive learning method
  publication-title: arXiv:1907.04931
– ident: ref7
  doi: 10.1109/PROC.1967.6011
– ident: ref22
  doi: 10.1177/10943420241268200
SSID ssj0014844
Score 2.4718451
Snippet In this communication, a parallel direct finite element solver is proposed for solving complex electromagnetic problems. Our proposed solver features adaptive...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2690
SubjectTerms Accelerators
Aggregates
Algorithms
Antennas and propagation
Artificial neural networks
Complex structures
Data transfer (computers)
Electromagnetics
Factorization
Feature extraction
Finite element analysis
finite element method (FEM)
Format
graph convolutional network (GCN)
Graph convolutional networks
large-scale parallel algorithm
Machine learning
manycore architecture
Parallel processing
radiation problems
Solvers
Sparse matrices
Sunway computing systems
supernodal factorization algorithm
Training
Vectors
Title A Parallel Direct Finite Element Solver Empowered by Machine Learning for Solving Large-Scale Electromagnetic Problems
URI https://ieeexplore.ieee.org/document/10901851
https://www.proquest.com/docview/3188133797
Volume 73
WOSCitedRecordID wos001464463100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE
  customDbUrl:
  eissn: 1558-2221
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014844
  issn: 0018-926X
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPOjBZ8VqlRy8eNh2N5vdTY5FWjxoKbRCb8smmZRCbUtf4L83j22piIK3HJIQ9ksyM5tv5kPokUqmONEQaEZ1QAVXAZcxDYxlpoooTZhkTmwi63bZcMh7ZbK6y4UBAEc-g4Zturd8NZNr-6usaUmExr6YYOcwy1KfrLV7MqCM-pLLkTnBJB1u3yRD3hy0eiYSJEnDLCBiLP5mg5yoyo-b2JmXztk_F3aOTks_Erc88BfoAKaX6GSvuuAV2rRwr1hYrZQJ9jcb7oyti4nbnjOO-zPLi8btj7nVSgOFxSd-c-xKwGXh1RE2Xq3raNuvljce9A2ubhIroPNRjKY2ERL3vDTNsoreO-3B80tQyiwEknC6CoyDoRIumdaaCqmZbQONCNGxiJiioQQVQih0qMMMYkhJmAiWaSIMjkVM42tUmc6mcINwplJiJoUoKTiFuGA8EZEQxo3QxhcAXUPN7YfPZVmD3EphTHIXi4Q8N1DlFqq8hKqGnnYj5r7-xh99qxaavX4elRqqb8HNyxO6zM1dxkx8nvHs9pdhd-jYzu5pOnVUWS3WcI-O5GY1Xi4e3Ob7Ar3k1_A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SBfXgW6zPHLx42DabzXaTY5GWim0pWKG3ZZNMRNBW2ir4781jWyqi4C2HJBv222RmNt_Mh9A1U1wLaiAynJmISaEjoRIWWcvMNNWGcsW92ETW7_PRSAzKZHWfCwMAnnwGNdf0d_l6ot7dr7K6IxFa-2KDnfWUMUpCutby0oBxFooux3YP08ZocStJRH3YHNhYkKY1u4SY8-SbFfKyKj_OYm9g2rv_XNoe2ik9SdwM0O-jNRgfoO2V-oKH6KOJB8XUqaW84HC24fazczJxK7DG8cPEMaNx6_XNqaWBxvIT9zy_EnBZevUJW7_Wd3TtrmOORw8WWT-Jk9B5LZ7GLhUSD4I4zewIPbZbw9tOVAotRIoKNo-si6FTobgxhklluGsDiyk1iYy5ZkSBJkCkIYZkkECDklTyzFBpkSwSlhyjyngyhhOEM92gdlKI00IwSAouUhlLaR0JY70BMFVUX7z4XJVVyJ0YxkvuoxEicgtV7qDKS6iq6GY54i1U4Pij75GDZqVfQKWKzhfg5uUeneX2NOM2Qs9EdvrLsCu02Rn2unn3rn9_hrbckwJp5xxV5tN3uEAb6mP-PJte-g_xCyBf2zc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Parallel+Direct+Finite+Element+Solver+Empowered+by+Machine+Learning+for+Solving+Large-Scale+Electromagnetic+Problems&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Wang%2C+Junjie&rft.au=Zuo%2C+Sheng&rft.au=Zhao%2C+Xunwang&rft.au=Tian%2C+Min&rft.date=2025-04-01&rft.issn=0018-926X&rft.eissn=1558-2221&rft.volume=73&rft.issue=4&rft.spage=2690&rft.epage=2695&rft_id=info:doi/10.1109%2FTAP.2025.3541883&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAP_2025_3541883
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon