Improving Scalability in Traffic Engineering via Optical Topology Programming

We present a novel framework, GreyLambda, to improve the scalability of traffic engineering (TE) systems. TE systems continuously monitor traffic and allocate network resources based on observed demands. The temporal requirement for TE is to have a time-to-solution in five minutes or less. Additiona...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE eTransactions on network and service management Ročník 21; číslo 2; s. 1
Hlavní autori: Nance-Hall, Matthew, Barford, Paul, Foerster, Klaus-Tycho, Durairajan, Ramakrishnan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1932-4537, 1932-4537
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present a novel framework, GreyLambda, to improve the scalability of traffic engineering (TE) systems. TE systems continuously monitor traffic and allocate network resources based on observed demands. The temporal requirement for TE is to have a time-to-solution in five minutes or less. Additionally, traffic allocations have a spatial requirement, which is to enable all traffic to traverse the network without encountering an over-subscribed link. However, the multi-commodity flowbased TE formulation cannot scale with increasing network sizes. Recent approaches have relaxed multi-commodity flow constraints to meet the temporal requirement but fail to satisfy the spatial requirement due to changing traffic demands, resulting in oversubscribed links or infeasible solutions. To satisfy both these requirements, we utilize optical topology programming (OTP) to rapidly reconfigure optical wavelengths in critical network paths and provide localized bandwidth scaling and new paths for traffic forwarding. GreyLambda integrates OTP into TE systems by introducing a heuristic algorithm that capitalizes on latent hardware resources at high-degree nodes to offer bandwidth scaling, and a method to reduce optical path reconfiguration latencies. Our experiments show that GreyLambda enhances the performance of two state-of-the-art TE systems, SMORE and NCFlow in real-world topologies with challenging traffic and link failure scenarios.
AbstractList We present a novel framework, GreyLambda, to improve the scalability of traffic engineering (TE) systems. TE systems continuously monitor traffic and allocate network resources based on observed demands. The temporal requirement for TE is to have a time-to-solution in five minutes or less. Additionally, traffic allocations have a spatial requirement, which is to enable all traffic to traverse the network without encountering an over-subscribed link. However, the multi-commodity flow-based TE formulation cannot scale with increasing network sizes. Recent approaches have relaxed multi-commodity flow constraints to meet the temporal requirement but fail to satisfy the spatial requirement due to changing traffic demands, resulting in oversubscribed links or infeasible solutions. To satisfy both these requirements, we utilize optical topology programming (OTP) to rapidly reconfigure optical wavelengths in critical network paths and provide localized bandwidth scaling and new paths for traffic forwarding. GreyLambda integrates OTP into TE systems by introducing a heuristic algorithm that capitalizes on latent hardware resources at high-degree nodes to offer bandwidth scaling, and a method to reduce optical path reconfiguration latencies. Our experiments show that GreyLambda enhances the performance of two state-of-the-art TE systems, SMORE and NCFlow in real-world topologies with challenging traffic and link failure scenarios.
We present a novel framework, GreyLambda, to improve the scalability of traffic engineering (TE) systems. TE systems continuously monitor traffic and allocate network resources based on observed demands. The temporal requirement for TE is to have a time-to-solution in five minutes or less. Additionally, traffic allocations have a spatial requirement, which is to enable all traffic to traverse the network without encountering an over-subscribed link. However, the multi-commodity flowbased TE formulation cannot scale with increasing network sizes. Recent approaches have relaxed multi-commodity flow constraints to meet the temporal requirement but fail to satisfy the spatial requirement due to changing traffic demands, resulting in oversubscribed links or infeasible solutions. To satisfy both these requirements, we utilize optical topology programming (OTP) to rapidly reconfigure optical wavelengths in critical network paths and provide localized bandwidth scaling and new paths for traffic forwarding. GreyLambda integrates OTP into TE systems by introducing a heuristic algorithm that capitalizes on latent hardware resources at high-degree nodes to offer bandwidth scaling, and a method to reduce optical path reconfiguration latencies. Our experiments show that GreyLambda enhances the performance of two state-of-the-art TE systems, SMORE and NCFlow in real-world topologies with challenging traffic and link failure scenarios.
Author Foerster, Klaus-Tycho
Durairajan, Ramakrishnan
Barford, Paul
Nance-Hall, Matthew
Author_xml – sequence: 1
  givenname: Matthew
  orcidid: 0000-0002-0802-2920
  surname: Nance-Hall
  fullname: Nance-Hall, Matthew
  organization: University of Oregon, USA
– sequence: 2
  givenname: Paul
  orcidid: 0000-0001-7874-1819
  surname: Barford
  fullname: Barford, Paul
  organization: University of Wisconsin-Madison, USA
– sequence: 3
  givenname: Klaus-Tycho
  orcidid: 0000-0003-4635-4480
  surname: Foerster
  fullname: Foerster, Klaus-Tycho
  organization: TU Dortmund, Germany
– sequence: 4
  givenname: Ramakrishnan
  orcidid: 0000-0003-2859-5598
  surname: Durairajan
  fullname: Durairajan, Ramakrishnan
  organization: University of Oregon, USA
BookMark eNp9kMtqAjEUQEOxULX9gEIXA12PvXnMI8sithW0FpyuQ4zJEJlJbGYU_PvOoAvpoqvcxTn3hjNCA-edRugRwwRj4C_F53o5IUDohFKa5Dy_QUPMKYlZQrPB1XyHRk2zA0hyzMkQLef1PvijdWW0VrKSG1vZ9hRZFxVBGmNVNHOldVqHHjlaGa32re3IqPB7X_nyFH0FXwZZ1x1wj26NrBr9cHnH6PttVkw_4sXqfT59XcSKcNbGJGVUZmSrUgNqy4HlOsVcZUA5cMVkipnEBIzRGnCegGY5lkTJTJONSQynY_R83tv9_eegm1bs_CG47qSgwABYkpOko7IzpYJvmqCNULaVrfWuDdJWAoPo24m-nejbiUu7zsR_zH2wtQynf52ns2O11lc8pZDyhP4Chod8WA
CODEN ITNSC4
CitedBy_id crossref_primary_10_1007_s44443_025_00133_z
crossref_primary_10_1109_TMC_2025_3558815
Cites_doi 10.1364/JOCN.7.00A174
10.1007/s11107-015-0488-0
10.1364/OFC.2013.OW1H.2
10.1364/OE.25.004773
10.1145/3230543.3230570
10.1145/3603269.3604857
10.1109/JLT.2016.2610964
10.1364/JOCN.10.000024
10.1145/2620728.2620744
10.1145/2535372.2535385
10.1145/2491159.2491170
10.1145/3230543.3230545
10.1145/2656877.2656890
10.1145/3473938.3474510
10.14722/ndss.2016.23147
10.1145/2486001.2486012
10.1145/1355734.1355746
10.1109/JLT.2017.2722038
10.1145/2018436.2018446
10.1109/MCOM.2004.1316540
10.1109/JLT.2016.2522305
10.1109/JSAC.2002.1003042
10.1109/COMST.2016.2586999
10.1109/infcom.2001.916777
10.1109/JSYST.2018.2798060
10.1109/sfcs.1975.21
10.17487/rfc4090
10.1109/INFCOM.2003.1209207
10.1145/2934872.2934904
10.1145/3563647.3563652
10.1364/OE.20.011688
10.1145/3452296.3472921
10.1364/OFC.2015.Th2A.36
10.1109/INFOCOM.2017.8056969
10.1109/JLT.2017.2674308
10.17487/rfc5714
10.1364/JOCN.8.000A45
10.1145/1374376.1374415
10.1145/2619239.2626314
10.1145/3351452.3351464
10.1145/2619239.2626336
10.1364/OFC.2015.M3H.4
10.1145/2486001.2486026
10.1109/ECOC.2014.6964144
10.1145/3341302.3342069
10.1109/ECOC.2015.7341813
10.1145/3185467.3185498
10.1109/COMST.2017.2715220
10.1145/2829988.2787478
10.1145/3452296.3472895
10.1109/ecoc.2015.7342005
10.1145/3152434.3152451
10.1145/2070562.2070586
10.1109/ICCCN.2019.8847124
10.1145/2534169.2486019
10.1364/JOCN.5.00A274
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TNSM.2023.3335898
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1932-4537
EndPage 1
ExternalDocumentID 10_1109_TNSM_2023_3335898
10330695
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CNS-2212590; SaTC-2132651
  funderid: 10.13039/100000001
– fundername: University of Oregon
  grantid: Doctoral Research Fellowship
  funderid: 10.13039/100011348
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
HZ~
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
4.4
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
ID FETCH-LOGICAL-c294t-2643a72dc6f0cd9048e619c703909c4a614a120ffee01850e481a2ca7e2bf5f93
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001205268100082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-4537
IngestDate Sun Jun 29 12:50:08 EDT 2025
Sat Nov 29 03:13:18 EST 2025
Tue Nov 18 22:13:15 EST 2025
Wed Aug 27 02:17:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/USG.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-2643a72dc6f0cd9048e619c703909c4a614a120ffee01850e481a2ca7e2bf5f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0802-2920
0000-0001-7874-1819
0000-0003-2859-5598
0000-0003-4635-4480
PQID 3040045825
PQPubID 85504
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TNSM_2023_3335898
ieee_primary_10330695
proquest_journals_3040045825
crossref_primary_10_1109_TNSM_2023_3335898
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE eTransactions on network and service management
PublicationTitleAbbrev T-NSM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
ref56
ref15
ref59
ref58
Loher (ref3) 2023
ref11
ref54
ref17
ref16
ref19
Zhong (ref79)
ref51
Zhou (ref38) 2017; 25
ref50
(ref27) 2023
ref46
ref45
Eisenbud (ref2)
ref48
ref42
ref41
ref44
ref43
Shand (ref66) 2010
Zhang (ref30)
Zhu (ref53)
ref8
ref7
ref4
ref5
ref40
Oda (ref55)
Holterbach (ref64)
ref78
ref37
ref36
ref31
ref75
Abuzaid (ref10)
ref74
ref33
ref77
ref76
ref1
Zhang (ref39) 2012; 20
(ref35) 2023
Kumar (ref9)
ref71
ref70
Kilper (ref47)
ref73
ref72
Nance-Hall (ref29)
Hofmeister (ref52)
Krishnaswamy (ref13)
ref24
ref68
ref23
ref26
ref25
ref69
ref20
ref22
ref21
(ref34) 2023
Mandal (ref14) 2015
ref28
(ref49) 2023
Pan (ref63) 2005
Atlas (ref65) 5286
(ref18) 2021
ref60
(ref67) 2016
ref62
ref61
Firestone (ref6) 2016
(ref32) 2018
References_xml – ident: ref46
  doi: 10.1364/JOCN.7.00A174
– ident: ref54
  doi: 10.1007/s11107-015-0488-0
– ident: ref78
  doi: 10.1364/OFC.2013.OW1H.2
– volume: 25
  start-page: 4773
  issue: 5
  year: 2017
  ident: ref38
  article-title: On the capacity improvement achieved by bandwidth-variable transceivers in meshed optical networks with cascaded roadms
  publication-title: Opt. Exp.
  doi: 10.1364/OE.25.004773
– ident: ref19
  doi: 10.1145/3230543.3230570
– volume-title: OpenConfig
  year: 2016
  ident: ref67
– ident: ref43
  doi: 10.1145/3603269.3604857
– ident: ref69
  doi: 10.1109/JLT.2016.2610964
– start-page: 1
  volume-title: Proc. Opt. Fiber Commun. Conf. Opt. Soc. America
  ident: ref30
  article-title: Breaking the bidirectional link paradigm
– ident: ref48
  doi: 10.1364/JOCN.10.000024
– volume-title: ‘TMgen
  year: 2018
  ident: ref32
– start-page: 1
  volume-title: Proc. ACM SIGCOMM
  ident: ref29
  article-title: Bridging the optical-packet network chasm via secure enclaves
– ident: ref24
  doi: 10.1145/2620728.2620744
– ident: ref60
  doi: 10.1145/2535372.2535385
– ident: ref33
  doi: 10.1145/2491159.2491170
– ident: ref22
  doi: 10.1145/3230543.3230545
– ident: ref4
  doi: 10.1145/2656877.2656890
– ident: ref28
  doi: 10.1145/3473938.3474510
– volume-title: Lessons learned from B4, Google’s SDN WAN
  year: 2015
  ident: ref14
– ident: ref36
  doi: 10.14722/ndss.2016.23147
– ident: ref8
  doi: 10.1145/2486001.2486012
– ident: ref5
  doi: 10.1145/1355734.1355746
– ident: ref73
  doi: 10.1109/JLT.2017.2722038
– start-page: 1
  volume-title: Proc. Opt. Fiber Commun. Conf.
  ident: ref79
  article-title: BOW: First real-world demonstration of a firewall-based Bayesian optimization system for wavelength deployment
– ident: ref41
  doi: 10.1145/2018436.2018446
– ident: ref61
  doi: 10.1109/MCOM.2004.1316540
– ident: ref77
  doi: 10.1109/JLT.2016.2522305
– start-page: 161
  volume-title: Proc. USENIX NSDI
  ident: ref64
  article-title: Blink: Fast connectivity recovery entirely in the data plane
– ident: ref62
  doi: 10.1109/JSAC.2002.1003042
– ident: ref56
  doi: 10.1109/COMST.2016.2586999
– ident: ref59
  doi: 10.1109/infcom.2001.916777
– ident: ref25
  doi: 10.1109/JSYST.2018.2798060
– volume-title: Basic specification for IP fast reroute: Loop-free alternates
  year: 5286
  ident: ref65
– ident: ref16
  doi: 10.1109/sfcs.1975.21
– volume-title: Fast reroute extensions to RSVP-TE for LSP tunnels
  year: 2005
  ident: ref63
  doi: 10.17487/rfc4090
– ident: ref26
  doi: 10.1109/INFCOM.2003.1209207
– ident: ref40
  doi: 10.1145/2934872.2934904
– ident: ref44
  doi: 10.1145/3563647.3563652
– start-page: 1
  volume-title: Proc. Opt. Fiber Commun. Conf. Opt. Soc. America
  ident: ref55
  article-title: Demonstration of an autonomous software controlled living optical network that eliminates the need for pre-planning
– volume: 20
  start-page: 11688
  issue: 11
  year: 2012
  ident: ref39
  article-title: 16qam transmission with 5.2 bits/s/hz spectral efficiency over transoceanic distance
  publication-title: Opt. Exp.
  doi: 10.1364/OE.20.011688
– ident: ref15
  doi: 10.1145/3452296.3472921
– volume-title: Cisco crosswork hierarchical controller
  year: 2023
  ident: ref49
– ident: ref71
  doi: 10.1364/OFC.2015.Th2A.36
– start-page: 1
  volume-title: Proc. Opt. Fiber Commun. Conf.
  ident: ref47
  article-title: Optical physical layer SDN: Enabling physical layer programmability through open control systems
– ident: ref50
  doi: 10.1109/INFOCOM.2017.8056969
– ident: ref76
  doi: 10.1109/JLT.2017.2674308
– volume-title: IP fast reroute framework
  year: 2010
  ident: ref66
  doi: 10.17487/rfc5714
– ident: ref51
  doi: 10.1364/JOCN.8.000A45
– ident: ref17
  doi: 10.1145/1374376.1374415
– volume-title: Google cloud networking in depth: Cloud CDN
  year: 2023
  ident: ref34
– start-page: 325
  volume-title: Proc. 19th USENIX Symp. Netw. Syst. Design Implement. (NSDI)
  ident: ref13
  article-title: Decentralized cloud wide-area network traffic engineering with BLASTSHIELD
– volume-title: SONiC: Software for open networking in the cloud.
  year: 2023
  ident: ref3
– ident: ref12
  doi: 10.1145/2619239.2626314
– ident: ref58
  doi: 10.1145/3351452.3351464
– ident: ref20
  doi: 10.1145/2619239.2626336
– volume-title: NCFlow github repository
  year: 2021
  ident: ref18
– ident: ref68
  doi: 10.1364/OFC.2015.M3H.4
– ident: ref1
  doi: 10.1145/2486001.2486026
– volume-title: Microsoft global network
  year: 2023
  ident: ref27
– ident: ref70
  doi: 10.1109/ECOC.2014.6964144
– ident: ref11
  doi: 10.1145/3341302.3342069
– start-page: 157
  volume-title: Proc. USENIX NSDI
  ident: ref9
  article-title: Semi-oblivious traffic engineering: The road not taken
– ident: ref74
  doi: 10.1109/ECOC.2015.7341813
– start-page: 1
  volume-title: Proc. Opt. Fiber Commun. Conf. Opt. Soc. America
  ident: ref53
  article-title: Demonstration of elastic optical network node with defragmentation functionality and SDN control
– start-page: 175
  volume-title: Proc. USENIX NSDI
  ident: ref10
  article-title: Contracting wide-area network topologies to solve flow problems quickly
– ident: ref31
  doi: 10.1145/3185467.3185498
– volume-title: Tunable DWDM transceivers
  year: 2023
  ident: ref35
– ident: ref57
  doi: 10.1109/COMST.2017.2715220
– ident: ref21
  doi: 10.1145/2829988.2787478
– ident: ref42
  doi: 10.1145/3452296.3472895
– start-page: 523
  volume-title: Proc. NSDI
  ident: ref2
  article-title: Maglev: A fast and reliable software network load balancer
– ident: ref72
  doi: 10.1109/ecoc.2015.7342005
– ident: ref37
  doi: 10.1145/3152434.3152451
– ident: ref75
  doi: 10.1145/2070562.2070586
– start-page: 1
  volume-title: Proc. Opt. Fiber Commun. Conf. Opt. Soc. America
  ident: ref52
  article-title: How can flexibility on the line side best be exploited on the client side?
– ident: ref23
  doi: 10.1109/ICCCN.2019.8847124
– volume-title: SmartNIC: Accelerating Azure’s network with FPGAs on OCS servers
  year: 2016
  ident: ref6
– ident: ref7
  doi: 10.1145/2534169.2486019
– ident: ref45
  doi: 10.1364/JOCN.5.00A274
SSID ssj0058192
Score 2.3218315
Snippet We present a novel framework, GreyLambda, to improve the scalability of traffic engineering (TE) systems. TE systems continuously monitor traffic and allocate...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Allocations
Bandwidth
Commodities
Computer Simulation Experiments
Control and Data Plane Programmability
Heuristic methods
Monitoring and Measurements
Network topologies
Network topology
Optical amplifiers
Optical fiber networks
Optical Networks
Optimization
Reconfiguration
Routing
Topology
Traffic control
Traffic engineering
Wide Area Networks
Title Improving Scalability in Traffic Engineering via Optical Topology Programming
URI https://ieeexplore.ieee.org/document/10330695
https://www.proquest.com/docview/3040045825
Volume 21
WOSCitedRecordID wos001205268100082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1932-4537
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0058192
  issn: 1932-4537
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5s8aAHnxWrVXLwJGzNPrM5ili8tBZaobclmwcUtC19Qf-9k2wqFVHwtodJWGYyr2RmPoC73MQYFCcqKFXCbYLCAs7LJEgwWDfU0Exy5cAmWK-Xj0a875vVXS-M1toVn-m2_XRv-WoqV_aqDDUcs--MpzWoMcaqZq2t2U3tZC__bBlS_jDsDbptiw3ejuM4zXn-zfE4JJUf5tf5lM7xP__mBI588EgeK2mfwp6enMHhzkjBc-h-3RKQAbK_msK9IeMJQa9kx0WQHXKyHgvyOnPX2WRYwSVsSL8q2fpAgga8dZ6HTy-Bh0wIZMSTpa1XiwWLlMwMlYqjempkukS15pTLRKAzFmFEjdGaoqemOslDEUnBdFSa1PD4AuqT6URfAqGhKiXDbYRNnw0TqKk6EjLVkiohsybQLT8L6eeJW1iL98LlFZQXVgSFFUHhRdCE-68ls2qYxl_EDcvzHcKK3U1obaVWeH1bFLGzRSmmu1e_LLuGA9zdF920oL6cr_QN7Mv1cryY37qj9AlznMgC
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oFNSDnxOnU3PwJHSmbfqRo4hj4lYHq7BbydIEBtqNfcH-e5M0GxNR8NbDS1vey_vMy-8B3MXSV0ExyZ1BTqhOUCKH0gFxiArWJZY45DQ3wyaiJIn7fdq1l9XNXRghhGk-Ew39aM7y8xGf61KZ0nCVfYc02IadgBDPLa9rrQxvoLG97MGli-lDmvQ6DT0dvOH7fhDT-JvrMbNUfhhg41WaR__8n2M4tOEjeizlfQJbojiFgw1QwTPorOsEqKcEUOJwL9GwQMovacAItEGOFkOG3samoI3ScmDCEnXLpq1PRVCF9-Zz-tRy7NAEh3uUzHTHms8iL-ehxDynSkGFYjtXik0x5YQpd8xcD0spBFa-GgsSu8zjLBLeQAaS-udQKUaFuACE3XzAI_UaphNoGTGlq8JjPBAc54yHNcArfmbcIorrwRYfmcksMM20CDItgsyKoAb36yXjEk7jL-Kq5vkGYcnuGtRXUsusxk0z31ijQCW8l78su4W9VtppZ-2X5PUK9tWXbAtOHSqzyVxcwy5fzIbTyY3ZVl8DQMtJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Scalability+in+Traffic+Engineering+via+Optical+Topology+Programming&rft.jtitle=IEEE+eTransactions+on+network+and+service+management&rft.au=Nance-Hall%2C+Matthew&rft.au=Barford%2C+Paul&rft.au=Foerster%2C+Klaus-Tycho&rft.au=Ramakrishnan+Durairajan&rft.date=2024-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=1932-4537&rft.volume=21&rft.issue=2&rft.spage=1581&rft_id=info:doi/10.1109%2FTNSM.2023.3335898&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4537&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4537&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4537&client=summon