Fusing Higher and Lower-Order Biological Information for Drug Repositioning via Graph Representation Learning

Drug repositioning is a promising drug development technique to identify new indications for existing drugs. However, existing computational models only make use of lower-order biological information at the level of individual drugs, diseases and their associations, but few of them can take into acc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on emerging topics in computing Ročník 12; číslo 1; s. 163 - 176
Hlavní autori: Zhao, Bo-Wei, Wang, Lei, Hu, Peng-Wei, Wong, Leon, Su, Xiao-Rui, Wang, Bao-Quan, You, Zhu-Hong, Hu, Lun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-6750, 2168-6750
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Drug repositioning is a promising drug development technique to identify new indications for existing drugs. However, existing computational models only make use of lower-order biological information at the level of individual drugs, diseases and their associations, but few of them can take into account higher-order connectivity patterns presented in biological heterogeneous information networks (HINs). In this work, we propose a novel graph representation learning model, namely FuHLDR, for drug repositioning by fusing higher and lower-order biological information. Specifically, given a HIN, FuHLDR first learns the representations of drugs and diseases at a lower-order level by considering their biological attributes and drug-disease associations (DDAs) through a graph convolutional network model. Then, a meta-path-based strategy is designed to obtain their higher-order representations involving the associations among drugs, proteins and diseases. Their integrated representations are thus determined by fusing higher and lower-order representations, and finally a Random Vector Functional Link Network is employed by FuHLDR to identify novel DDAs. Experimental results on two benchmark datasets demonstrate that FuHLDR performs better than several state-of-the-art drug repositioning models. Furthermore, our case studies on Alzheimer's disease and Breast neoplasms indicate that the rich higher-order biological information gains new insight into drug repositioning with improved accuracy.
AbstractList Drug repositioning is a promising drug development technique to identify new indications for existing drugs. However, existing computational models only make use of lower-order biological information at the level of individual drugs, diseases and their associations, but few of them can take into account higher-order connectivity patterns presented in biological heterogeneous information networks (HINs). In this work, we propose a novel graph representation learning model, namely FuHLDR, for drug repositioning by fusing higher and lower-order biological information. Specifically, given a HIN, FuHLDR first learns the representations of drugs and diseases at a lower-order level by considering their biological attributes and drug-disease associations (DDAs) through a graph convolutional network model. Then, a meta-path-based strategy is designed to obtain their higher-order representations involving the associations among drugs, proteins and diseases. Their integrated representations are thus determined by fusing higher and lower-order representations, and finally a Random Vector Functional Link Network is employed by FuHLDR to identify novel DDAs. Experimental results on two benchmark datasets demonstrate that FuHLDR performs better than several state-of-the-art drug repositioning models. Furthermore, our case studies on Alzheimer's disease and Breast neoplasms indicate that the rich higher-order biological information gains new insight into drug repositioning with improved accuracy.
Author Zhao, Bo-Wei
You, Zhu-Hong
Su, Xiao-Rui
Hu, Lun
Wang, Lei
Wang, Bao-Quan
Wong, Leon
Hu, Peng-Wei
Author_xml – sequence: 1
  givenname: Bo-Wei
  orcidid: 0000-0001-8200-6016
  surname: Zhao
  fullname: Zhao, Bo-Wei
  email: zhaobowei19@mails.ucas.ac.cn
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
– sequence: 2
  givenname: Lei
  orcidid: 0000-0003-0184-307X
  surname: Wang
  fullname: Wang, Lei
  email: leiwang@gxas.cn
  organization: Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences, Nanning, China
– sequence: 3
  givenname: Peng-Wei
  orcidid: 0000-0001-5974-7932
  surname: Hu
  fullname: Hu, Peng-Wei
  email: hupengwei@hotmail.com
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
– sequence: 4
  givenname: Leon
  surname: Wong
  fullname: Wong, Leon
  email: lghuang@gxas.cn
  organization: Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences, Nanning, China
– sequence: 5
  givenname: Xiao-Rui
  orcidid: 0000-0001-5468-6085
  surname: Su
  fullname: Su, Xiao-Rui
  email: suxiaorui19@mails.ucas.ac.cn
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
– sequence: 6
  givenname: Bao-Quan
  surname: Wang
  fullname: Wang, Bao-Quan
  email: wangbq@ms.xjb.ac.cn
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
– sequence: 7
  givenname: Zhu-Hong
  orcidid: 0000-0003-1266-2696
  surname: You
  fullname: You, Zhu-Hong
  email: zhuhongyou@nwpu.edu.cn
  organization: School of Computer Science, Northwestern Polytechnical University, Xi'an, China
– sequence: 8
  givenname: Lun
  orcidid: 0000-0002-1591-8549
  surname: Hu
  fullname: Hu, Lun
  email: hulun@ms.xjb.ac.cn
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
BookMark eNp9UF1LwzAUDTLBOfcDBB8CPnemSZo0jzrdBxQGMp9L2qZdRtfUpFX89zZ0D8MH78v94Jxz7z23YNKYRgFwH6JFGCLxtH_bLxcYYbIgmAhBxRWY4pDFAeMRmlzUN2Du3BENEYdMMD4Fp1XvdFPBja4OykLZFDAx38oGO1sM_Ys2tal0Lmu4bUpjT7LTpoFDBV9tX8F31Rqn_cyLfGkJ11a2Bz-3yqmmG_GJktYj7sB1KWun5uc8Ax-r4fZNkOzW2-VzEuRY0C7AEcYMlYyLIuI8VpJKTHgkWZgRRjIiSYEoLVgUFSVjBcVxnGVYlpgzlnFJyAw8jrqtNZ-9cl16NL1thpUpFkwgKnjsUeGIyq1xzqoyba0-SfuThij1xqbe2NQbm56NHTj8DyfX45Odlbr-l_kwMrVS6mITIpTyiPwC2VuH-A
CODEN ITETBT
CitedBy_id crossref_primary_10_1109_JBHI_2024_3383591
crossref_primary_10_1016_j_jpha_2025_101305
crossref_primary_10_1093_bib_bbae167
crossref_primary_10_1109_JAS_2024_124233
crossref_primary_10_1016_j_knosys_2024_112638
crossref_primary_10_1016_j_patcog_2025_112114
crossref_primary_10_1016_j_jpha_2025_101347
crossref_primary_10_1186_s12915_024_02028_3
crossref_primary_10_1109_JBHI_2024_3500027
crossref_primary_10_1186_s12859_023_05479_7
crossref_primary_10_1021_acs_jcim_5c00070
crossref_primary_10_1186_s12859_023_05411_z
crossref_primary_10_1186_s12859_023_05496_6
crossref_primary_10_1016_j_knosys_2025_114344
crossref_primary_10_1016_j_heliyon_2024_e34244
crossref_primary_10_1016_j_knosys_2025_114063
crossref_primary_10_1186_s12911_024_02646_5
crossref_primary_10_1186_s12859_023_05503_w
crossref_primary_10_1186_s12859_023_05400_2
crossref_primary_10_1016_j_jbi_2025_104843
crossref_primary_10_1109_JBHI_2024_3497591
crossref_primary_10_1109_TCBBIO_2025_3563470
crossref_primary_10_1007_s40747_024_01674_y
crossref_primary_10_1016_j_sbi_2024_102881
crossref_primary_10_1186_s12859_023_05469_9
crossref_primary_10_1186_s12859_023_05542_3
crossref_primary_10_1007_s00500_023_09364_6
crossref_primary_10_3389_fmicb_2024_1421608
crossref_primary_10_1186_s12859_023_05394_x
crossref_primary_10_3390_math11183990
crossref_primary_10_1109_TBDATA_2023_3334673
crossref_primary_10_1016_j_compbiolchem_2023_107980
crossref_primary_10_1371_journal_pone_0318420
crossref_primary_10_1007_s12559_024_10384_z
crossref_primary_10_1186_s12859_023_05387_w
crossref_primary_10_1038_s41598_024_67163_x
crossref_primary_10_1186_s12859_023_05574_9
crossref_primary_10_1016_j_compbiomed_2025_111046
crossref_primary_10_1016_j_compbiomed_2025_110873
crossref_primary_10_1016_j_compbiomed_2024_109145
crossref_primary_10_1186_s12859_023_05460_4
crossref_primary_10_1016_j_jpha_2025_101275
crossref_primary_10_1109_TCBBIO_2025_3562876
crossref_primary_10_1016_j_ab_2024_115691
crossref_primary_10_1371_journal_pone_0315718
crossref_primary_10_1016_j_future_2024_107491
crossref_primary_10_1002_qub2_39
crossref_primary_10_1186_s12859_023_05447_1
crossref_primary_10_1186_s12859_023_05251_x
crossref_primary_10_1186_s12859_024_05679_9
crossref_primary_10_1186_s12911_024_02467_6
crossref_primary_10_1186_s12915_025_02206_x
Cites_doi 10.1093/schbul/sbaa078
10.1093/bib/bbz176
10.1016/j.neucom.2013.09.055
10.1093/nar/gkw838
10.1371/journal.pone.0078518
10.1145/3097983.3098036
10.1021/acscentsci.0c00489
10.1093/bib/bbab319
10.1093/bib/bbaa037
10.1093/bib/bbv020
10.1093/bioinformatics/btaa1024
10.1093/nar/gkw943
10.1093/bioinformatics/btaa437
10.1093/bib/bbab344
10.1093/bib/bbaa243
10.1056/NEJM199911253412207
10.1016/j.patcog.2021.107978
10.1093/bioinformatics/btw228
10.1016/j.asoc.2017.09.020
10.5858/133.6.893
10.1158/1538-7445.AM2020-5025
10.1093/bioinformatics/bty013
10.1093/bioinformatics/btaa775
10.1016/j.ymeth.2018.06.001
10.1093/bib/bbab226
10.1155/2015/275045
10.1371/journal.pcbi.1004760
10.1016/j.ins.2015.09.025
10.1093/bioinformatics/btz965
10.1016/j.neucom.2019.08.084
10.1038/msb.2011.26
10.1093/bioinformatics/btz418
10.1093/nar/gky1131
10.1254/jpssuppl.wcp2018.0_po2-1-31
10.1093/bib/bbaa357
10.1093/nar/gkx1037
10.1093/bib/bbaa267
10.1016/j.asoc.2019.105854
10.1093/bib/bbab515
10.18502/ijaai.v20i5.7410
10.1021/ci00057a005
10.1093/bib/bbaa256
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TETC.2023.3239949
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-6750
EndPage 176
ExternalDocumentID 10_1109_TETC_2023_3239949
10034475
Genre orig-research
GrantInformation_xml – fundername: Zaozhuang University
  funderid: 10.13039/501100008855
– fundername: Natural Science Foundation of Xinjiang Uygur Autonomous Region
  grantid: 2021D01D05
  funderid: 10.13039/100009110
– fundername: NSFC Excellent Young Scholars Program
  grantid: 61722212
– fundername: National Natural Science Foundation of China
  grantid: 62172355; 61702444
  funderid: 10.13039/501100001809
– fundername: Pioneer Hundred Talents Program of Chinese Academy of Sciences
– fundername: Tianchi Doctoral Program of Xinjiang Uygur Autonomous Region
– fundername: Tianshan youth - Excellent Youth
  grantid: 2019Q029
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
KQ8
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-252260f679d5778ea4a2375a61b363b3a3d044d655df66d4288bb2af2766b7a33
IEDL.DBID RIE
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001188348600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-6750
IngestDate Sun Nov 30 05:12:58 EST 2025
Tue Nov 18 22:27:55 EST 2025
Sat Nov 29 04:00:27 EST 2025
Wed Aug 27 02:02:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-252260f679d5778ea4a2375a61b363b3a3d044d655df66d4288bb2af2766b7a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5974-7932
0000-0001-5468-6085
0000-0003-1266-2696
0000-0002-1591-8549
0000-0001-8200-6016
0000-0003-0184-307X
PQID 2969049783
PQPubID 4437215
PageCount 14
ParticipantIDs proquest_journals_2969049783
crossref_primary_10_1109_TETC_2023_3239949
ieee_primary_10034475
crossref_citationtrail_10_1109_TETC_2023_3239949
PublicationCentury 2000
PublicationDate 2024-Jan.-March
2024-1-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan.-March
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on emerging topics in computing
PublicationTitleAbbrev TETC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
Kipf (ref31) 2016
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref44
ref21
ref43
Landrum (ref22) 2013; 1
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref43
  doi: 10.1093/schbul/sbaa078
– ident: ref10
  doi: 10.1093/bib/bbz176
– ident: ref29
  doi: 10.1016/j.neucom.2013.09.055
– ident: ref35
  doi: 10.1093/nar/gkw838
– ident: ref12
  doi: 10.1371/journal.pone.0078518
– ident: ref21
  doi: 10.1145/3097983.3098036
– ident: ref2
  doi: 10.1021/acscentsci.0c00489
– ident: ref18
  doi: 10.1093/bib/bbab319
– ident: ref25
  doi: 10.1093/bib/bbaa037
– ident: ref3
  doi: 10.1093/bib/bbv020
– ident: ref4
  doi: 10.1093/bioinformatics/btaa1024
– ident: ref36
  doi: 10.1093/nar/gkw943
– ident: ref14
  doi: 10.1093/bioinformatics/btaa437
– ident: ref30
  doi: 10.1093/bib/bbab344
– ident: ref16
  doi: 10.1093/bib/bbaa243
– ident: ref38
  doi: 10.1056/NEJM199911253412207
– ident: ref37
  doi: 10.1016/j.patcog.2021.107978
– ident: ref5
  doi: 10.1093/bioinformatics/btw228
– ident: ref32
  doi: 10.1016/j.asoc.2017.09.020
– ident: ref39
  doi: 10.5858/133.6.893
– ident: ref41
  doi: 10.1158/1538-7445.AM2020-5025
– ident: ref6
  doi: 10.1093/bioinformatics/bty013
– ident: ref20
  doi: 10.1093/bioinformatics/btaa775
– ident: ref8
  doi: 10.1016/j.ymeth.2018.06.001
– ident: ref17
  doi: 10.1093/bib/bbab226
– ident: ref9
  doi: 10.1155/2015/275045
– year: 2016
  ident: ref31
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref7
  doi: 10.1371/journal.pcbi.1004760
– ident: ref34
  doi: 10.1016/j.ins.2015.09.025
– volume: 1
  issue: 1-79
  year: 2013
  ident: ref22
  article-title: RDKit documentation
  publication-title: Release
– ident: ref15
  doi: 10.1093/bioinformatics/btz965
– ident: ref27
  doi: 10.1016/j.neucom.2019.08.084
– ident: ref11
  doi: 10.1038/msb.2011.26
– ident: ref19
  doi: 10.1093/bioinformatics/btz418
– ident: ref28
  doi: 10.1093/nar/gky1131
– ident: ref42
  doi: 10.1254/jpssuppl.wcp2018.0_po2-1-31
– ident: ref1
  doi: 10.1093/bib/bbaa357
– ident: ref24
  doi: 10.1093/nar/gkx1037
– ident: ref26
  doi: 10.1093/bib/bbaa267
– ident: ref33
  doi: 10.1016/j.asoc.2019.105854
– ident: ref13
  doi: 10.1093/bib/bbab515
– ident: ref40
  doi: 10.18502/ijaai.v20i5.7410
– ident: ref23
  doi: 10.1021/ci00057a005
– ident: ref44
  doi: 10.1093/bib/bbaa256
SSID ssj0000816967
Score 2.530387
Snippet Drug repositioning is a promising drug development technique to identify new indications for existing drugs. However, existing computational models only make...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 163
SubjectTerms Alzheimer's disease
Artificial neural networks
Biological system modeling
Computational modeling
Diseases
Drug repositioning
drug-disease association
Drugs
graph representation learning
Graph representations
Graphical representations
higher and lower-order information
information fusion
Learning
Neoplasms
Predictive models
Proteins
Representation learning
Title Fusing Higher and Lower-Order Biological Information for Drug Repositioning via Graph Representation Learning
URI https://ieeexplore.ieee.org/document/10034475
https://www.proquest.com/docview/2969049783
Volume 12
WOSCitedRecordID wos001188348600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-6750
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816967
  issn: 2168-6750
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCZu8aAHf844nYaDJxMmLRTK0ajTwzI9TLNbA4UuS7Saue3vt6-wucRo4o20QBq-Ao_He9-H0EWuKyvEKU4iZSnhJhXEVEslMVyZxPJC09p18dKXg0E6GqmnkKxe58I45-rgM9eFYn2Xb9_zObjKqhnuCeoaqCGl9MlaK4cKKEgoIcPNZUTV1fBueNMFefAugwxOoMtc23tqMZUfK3C9rfR2__lBe2gn2I_42gO-jzZceYC211gFD9FbD4LZx9iHcGBdWtwHLTTyCDSb2KtPAjY45CIBNrgq4dvpfIzBJPeBXNDJYqLxPZBaw_PvVKUSB2LWcQs996oReCBBVYHkseIzEoPFRQshlU2kTJ3mOmYy0SIyTDDDNLOUcyuSxBZC2Op4khoT6yKWQhipGTtCzfK9dMcIgznIbFS9sznPkzQVUpvExY7qIolc3EZ0Od5ZHijHQfniNauPHlRlAFEGEGUBoja6XDX58Hwbf1VuASZrFT0cbdRZopqFKfmZxUooCnp67OSXZqdoq-qdewdLBzVn07k7Q5v5Yjb5nJ7Xf9sXvhnTUA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH5iMGnjsLHRiQJjPuw0KcXxz_iI2ApopXDoELfIjp0KCQIqLX8_ebFhldAmcbMSO4n8xfbz83vfB_C9sq0VEozIcuNpJlyhMtdOlZkTxkkvaks718XFSI_HxeWlOU_J6l0uTAihCz4LAyx2Z_n-tlqgq6wd4ZGg7g2sSSFYHtO1nl0qqCFhlE5nlzk1-5Nfk8MBCoQPOOZwImHm0urTyam8mIO7hWX48ZWftAEfkgVJDiLkn2AlNJ9hfYlXcBNuhhjOPiUxiIPYxpMRqqFlZ0i0SaL-JKJDUjYSokPaEvk5W0wJGuUxlAsf8nBlyRHSWuP1v8lKDUnUrNMe_Bm2PXCcJV2FrGJGzDOGNhetlTZeal0EKyzjWlqVO66445Z7KoRXUvpaKd9uUArnmK2ZVsppy_kXWG1um7AFBA1C7vP2nq9EJYtCaetkYIHaWuaB9YE-9XdZJdJx1L64LrvNBzUlQlQiRGWCqA8_npvcRcaN_1XuISZLFSMcfdh9QrVMg_K-ZEYZiop6fPsfzb7Bu-PJ6agcnYx_78D79k0iult2YXU-W4Sv8LZ6mF_dz_a6P-8R4rzWlw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusing+Higher+and+Lower-Order+Biological+Information+for+Drug+Repositioning+via+Graph+Representation+Learning&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computing&rft.au=Zhao%2C+Bo-Wei&rft.au=Wang%2C+Lei&rft.au=Hu%2C+Peng-Wei&rft.au=Wong%2C+Leon&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2168-6750&rft.volume=12&rft.issue=1&rft.spage=163&rft.epage=176&rft_id=info:doi/10.1109%2FTETC.2023.3239949&rft.externalDocID=10034475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-6750&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-6750&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-6750&client=summon