Fusing Higher and Lower-Order Biological Information for Drug Repositioning via Graph Representation Learning
Drug repositioning is a promising drug development technique to identify new indications for existing drugs. However, existing computational models only make use of lower-order biological information at the level of individual drugs, diseases and their associations, but few of them can take into acc...
Uložené v:
| Vydané v: | IEEE transactions on emerging topics in computing Ročník 12; číslo 1; s. 163 - 176 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2168-6750, 2168-6750 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Drug repositioning is a promising drug development technique to identify new indications for existing drugs. However, existing computational models only make use of lower-order biological information at the level of individual drugs, diseases and their associations, but few of them can take into account higher-order connectivity patterns presented in biological heterogeneous information networks (HINs). In this work, we propose a novel graph representation learning model, namely FuHLDR, for drug repositioning by fusing higher and lower-order biological information. Specifically, given a HIN, FuHLDR first learns the representations of drugs and diseases at a lower-order level by considering their biological attributes and drug-disease associations (DDAs) through a graph convolutional network model. Then, a meta-path-based strategy is designed to obtain their higher-order representations involving the associations among drugs, proteins and diseases. Their integrated representations are thus determined by fusing higher and lower-order representations, and finally a Random Vector Functional Link Network is employed by FuHLDR to identify novel DDAs. Experimental results on two benchmark datasets demonstrate that FuHLDR performs better than several state-of-the-art drug repositioning models. Furthermore, our case studies on Alzheimer's disease and Breast neoplasms indicate that the rich higher-order biological information gains new insight into drug repositioning with improved accuracy. |
|---|---|
| AbstractList | Drug repositioning is a promising drug development technique to identify new indications for existing drugs. However, existing computational models only make use of lower-order biological information at the level of individual drugs, diseases and their associations, but few of them can take into account higher-order connectivity patterns presented in biological heterogeneous information networks (HINs). In this work, we propose a novel graph representation learning model, namely FuHLDR, for drug repositioning by fusing higher and lower-order biological information. Specifically, given a HIN, FuHLDR first learns the representations of drugs and diseases at a lower-order level by considering their biological attributes and drug-disease associations (DDAs) through a graph convolutional network model. Then, a meta-path-based strategy is designed to obtain their higher-order representations involving the associations among drugs, proteins and diseases. Their integrated representations are thus determined by fusing higher and lower-order representations, and finally a Random Vector Functional Link Network is employed by FuHLDR to identify novel DDAs. Experimental results on two benchmark datasets demonstrate that FuHLDR performs better than several state-of-the-art drug repositioning models. Furthermore, our case studies on Alzheimer's disease and Breast neoplasms indicate that the rich higher-order biological information gains new insight into drug repositioning with improved accuracy. |
| Author | Zhao, Bo-Wei You, Zhu-Hong Su, Xiao-Rui Hu, Lun Wang, Lei Wang, Bao-Quan Wong, Leon Hu, Peng-Wei |
| Author_xml | – sequence: 1 givenname: Bo-Wei orcidid: 0000-0001-8200-6016 surname: Zhao fullname: Zhao, Bo-Wei email: zhaobowei19@mails.ucas.ac.cn organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China – sequence: 2 givenname: Lei orcidid: 0000-0003-0184-307X surname: Wang fullname: Wang, Lei email: leiwang@gxas.cn organization: Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences, Nanning, China – sequence: 3 givenname: Peng-Wei orcidid: 0000-0001-5974-7932 surname: Hu fullname: Hu, Peng-Wei email: hupengwei@hotmail.com organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China – sequence: 4 givenname: Leon surname: Wong fullname: Wong, Leon email: lghuang@gxas.cn organization: Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences, Nanning, China – sequence: 5 givenname: Xiao-Rui orcidid: 0000-0001-5468-6085 surname: Su fullname: Su, Xiao-Rui email: suxiaorui19@mails.ucas.ac.cn organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China – sequence: 6 givenname: Bao-Quan surname: Wang fullname: Wang, Bao-Quan email: wangbq@ms.xjb.ac.cn organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China – sequence: 7 givenname: Zhu-Hong orcidid: 0000-0003-1266-2696 surname: You fullname: You, Zhu-Hong email: zhuhongyou@nwpu.edu.cn organization: School of Computer Science, Northwestern Polytechnical University, Xi'an, China – sequence: 8 givenname: Lun orcidid: 0000-0002-1591-8549 surname: Hu fullname: Hu, Lun email: hulun@ms.xjb.ac.cn organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China |
| BookMark | eNp9UF1LwzAUDTLBOfcDBB8CPnemSZo0jzrdBxQGMp9L2qZdRtfUpFX89zZ0D8MH78v94Jxz7z23YNKYRgFwH6JFGCLxtH_bLxcYYbIgmAhBxRWY4pDFAeMRmlzUN2Du3BENEYdMMD4Fp1XvdFPBja4OykLZFDAx38oGO1sM_Ys2tal0Lmu4bUpjT7LTpoFDBV9tX8F31Rqn_cyLfGkJ11a2Bz-3yqmmG_GJktYj7sB1KWun5uc8Ax-r4fZNkOzW2-VzEuRY0C7AEcYMlYyLIuI8VpJKTHgkWZgRRjIiSYEoLVgUFSVjBcVxnGVYlpgzlnFJyAw8jrqtNZ-9cl16NL1thpUpFkwgKnjsUeGIyq1xzqoyba0-SfuThij1xqbe2NQbm56NHTj8DyfX45Odlbr-l_kwMrVS6mITIpTyiPwC2VuH-A |
| CODEN | ITETBT |
| CitedBy_id | crossref_primary_10_1109_JBHI_2024_3383591 crossref_primary_10_1016_j_jpha_2025_101305 crossref_primary_10_1093_bib_bbae167 crossref_primary_10_1109_JAS_2024_124233 crossref_primary_10_1016_j_knosys_2024_112638 crossref_primary_10_1016_j_patcog_2025_112114 crossref_primary_10_1016_j_jpha_2025_101347 crossref_primary_10_1186_s12915_024_02028_3 crossref_primary_10_1109_JBHI_2024_3500027 crossref_primary_10_1186_s12859_023_05479_7 crossref_primary_10_1021_acs_jcim_5c00070 crossref_primary_10_1186_s12859_023_05411_z crossref_primary_10_1186_s12859_023_05496_6 crossref_primary_10_1016_j_knosys_2025_114344 crossref_primary_10_1016_j_heliyon_2024_e34244 crossref_primary_10_1016_j_knosys_2025_114063 crossref_primary_10_1186_s12911_024_02646_5 crossref_primary_10_1186_s12859_023_05503_w crossref_primary_10_1186_s12859_023_05400_2 crossref_primary_10_1016_j_jbi_2025_104843 crossref_primary_10_1109_JBHI_2024_3497591 crossref_primary_10_1109_TCBBIO_2025_3563470 crossref_primary_10_1007_s40747_024_01674_y crossref_primary_10_1016_j_sbi_2024_102881 crossref_primary_10_1186_s12859_023_05469_9 crossref_primary_10_1186_s12859_023_05542_3 crossref_primary_10_1007_s00500_023_09364_6 crossref_primary_10_3389_fmicb_2024_1421608 crossref_primary_10_1186_s12859_023_05394_x crossref_primary_10_3390_math11183990 crossref_primary_10_1109_TBDATA_2023_3334673 crossref_primary_10_1016_j_compbiolchem_2023_107980 crossref_primary_10_1371_journal_pone_0318420 crossref_primary_10_1007_s12559_024_10384_z crossref_primary_10_1186_s12859_023_05387_w crossref_primary_10_1038_s41598_024_67163_x crossref_primary_10_1186_s12859_023_05574_9 crossref_primary_10_1016_j_compbiomed_2025_111046 crossref_primary_10_1016_j_compbiomed_2025_110873 crossref_primary_10_1016_j_compbiomed_2024_109145 crossref_primary_10_1186_s12859_023_05460_4 crossref_primary_10_1016_j_jpha_2025_101275 crossref_primary_10_1109_TCBBIO_2025_3562876 crossref_primary_10_1016_j_ab_2024_115691 crossref_primary_10_1371_journal_pone_0315718 crossref_primary_10_1016_j_future_2024_107491 crossref_primary_10_1002_qub2_39 crossref_primary_10_1186_s12859_023_05447_1 crossref_primary_10_1186_s12859_023_05251_x crossref_primary_10_1186_s12859_024_05679_9 crossref_primary_10_1186_s12911_024_02467_6 crossref_primary_10_1186_s12915_025_02206_x |
| Cites_doi | 10.1093/schbul/sbaa078 10.1093/bib/bbz176 10.1016/j.neucom.2013.09.055 10.1093/nar/gkw838 10.1371/journal.pone.0078518 10.1145/3097983.3098036 10.1021/acscentsci.0c00489 10.1093/bib/bbab319 10.1093/bib/bbaa037 10.1093/bib/bbv020 10.1093/bioinformatics/btaa1024 10.1093/nar/gkw943 10.1093/bioinformatics/btaa437 10.1093/bib/bbab344 10.1093/bib/bbaa243 10.1056/NEJM199911253412207 10.1016/j.patcog.2021.107978 10.1093/bioinformatics/btw228 10.1016/j.asoc.2017.09.020 10.5858/133.6.893 10.1158/1538-7445.AM2020-5025 10.1093/bioinformatics/bty013 10.1093/bioinformatics/btaa775 10.1016/j.ymeth.2018.06.001 10.1093/bib/bbab226 10.1155/2015/275045 10.1371/journal.pcbi.1004760 10.1016/j.ins.2015.09.025 10.1093/bioinformatics/btz965 10.1016/j.neucom.2019.08.084 10.1038/msb.2011.26 10.1093/bioinformatics/btz418 10.1093/nar/gky1131 10.1254/jpssuppl.wcp2018.0_po2-1-31 10.1093/bib/bbaa357 10.1093/nar/gkx1037 10.1093/bib/bbaa267 10.1016/j.asoc.2019.105854 10.1093/bib/bbab515 10.18502/ijaai.v20i5.7410 10.1021/ci00057a005 10.1093/bib/bbaa256 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TETC.2023.3239949 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-6750 |
| EndPage | 176 |
| ExternalDocumentID | 10_1109_TETC_2023_3239949 10034475 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Zaozhuang University funderid: 10.13039/501100008855 – fundername: Natural Science Foundation of Xinjiang Uygur Autonomous Region grantid: 2021D01D05 funderid: 10.13039/100009110 – fundername: NSFC Excellent Young Scholars Program grantid: 61722212 – fundername: National Natural Science Foundation of China grantid: 62172355; 61702444 funderid: 10.13039/501100001809 – fundername: Pioneer Hundred Talents Program of Chinese Academy of Sciences – fundername: Tianchi Doctoral Program of Xinjiang Uygur Autonomous Region – fundername: Tianshan youth - Excellent Youth grantid: 2019Q029 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF KQ8 M43 O9- OCL RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-252260f679d5778ea4a2375a61b363b3a3d044d655df66d4288bb2af2766b7a33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 67 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001188348600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-6750 |
| IngestDate | Sun Nov 30 05:12:58 EST 2025 Tue Nov 18 22:27:55 EST 2025 Sat Nov 29 04:00:27 EST 2025 Wed Aug 27 02:02:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-252260f679d5778ea4a2375a61b363b3a3d044d655df66d4288bb2af2766b7a33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5974-7932 0000-0001-5468-6085 0000-0003-1266-2696 0000-0002-1591-8549 0000-0001-8200-6016 0000-0003-0184-307X |
| PQID | 2969049783 |
| PQPubID | 4437215 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2969049783 crossref_primary_10_1109_TETC_2023_3239949 ieee_primary_10034475 crossref_citationtrail_10_1109_TETC_2023_3239949 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Jan.-March 2024-1-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-Jan.-March |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on emerging topics in computing |
| PublicationTitleAbbrev | TETC |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 Kipf (ref31) 2016 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref44 ref21 ref43 Landrum (ref22) 2013; 1 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref43 doi: 10.1093/schbul/sbaa078 – ident: ref10 doi: 10.1093/bib/bbz176 – ident: ref29 doi: 10.1016/j.neucom.2013.09.055 – ident: ref35 doi: 10.1093/nar/gkw838 – ident: ref12 doi: 10.1371/journal.pone.0078518 – ident: ref21 doi: 10.1145/3097983.3098036 – ident: ref2 doi: 10.1021/acscentsci.0c00489 – ident: ref18 doi: 10.1093/bib/bbab319 – ident: ref25 doi: 10.1093/bib/bbaa037 – ident: ref3 doi: 10.1093/bib/bbv020 – ident: ref4 doi: 10.1093/bioinformatics/btaa1024 – ident: ref36 doi: 10.1093/nar/gkw943 – ident: ref14 doi: 10.1093/bioinformatics/btaa437 – ident: ref30 doi: 10.1093/bib/bbab344 – ident: ref16 doi: 10.1093/bib/bbaa243 – ident: ref38 doi: 10.1056/NEJM199911253412207 – ident: ref37 doi: 10.1016/j.patcog.2021.107978 – ident: ref5 doi: 10.1093/bioinformatics/btw228 – ident: ref32 doi: 10.1016/j.asoc.2017.09.020 – ident: ref39 doi: 10.5858/133.6.893 – ident: ref41 doi: 10.1158/1538-7445.AM2020-5025 – ident: ref6 doi: 10.1093/bioinformatics/bty013 – ident: ref20 doi: 10.1093/bioinformatics/btaa775 – ident: ref8 doi: 10.1016/j.ymeth.2018.06.001 – ident: ref17 doi: 10.1093/bib/bbab226 – ident: ref9 doi: 10.1155/2015/275045 – year: 2016 ident: ref31 article-title: Semi-supervised classification with graph convolutional networks – ident: ref7 doi: 10.1371/journal.pcbi.1004760 – ident: ref34 doi: 10.1016/j.ins.2015.09.025 – volume: 1 issue: 1-79 year: 2013 ident: ref22 article-title: RDKit documentation publication-title: Release – ident: ref15 doi: 10.1093/bioinformatics/btz965 – ident: ref27 doi: 10.1016/j.neucom.2019.08.084 – ident: ref11 doi: 10.1038/msb.2011.26 – ident: ref19 doi: 10.1093/bioinformatics/btz418 – ident: ref28 doi: 10.1093/nar/gky1131 – ident: ref42 doi: 10.1254/jpssuppl.wcp2018.0_po2-1-31 – ident: ref1 doi: 10.1093/bib/bbaa357 – ident: ref24 doi: 10.1093/nar/gkx1037 – ident: ref26 doi: 10.1093/bib/bbaa267 – ident: ref33 doi: 10.1016/j.asoc.2019.105854 – ident: ref13 doi: 10.1093/bib/bbab515 – ident: ref40 doi: 10.18502/ijaai.v20i5.7410 – ident: ref23 doi: 10.1021/ci00057a005 – ident: ref44 doi: 10.1093/bib/bbaa256 |
| SSID | ssj0000816967 |
| Score | 2.530387 |
| Snippet | Drug repositioning is a promising drug development technique to identify new indications for existing drugs. However, existing computational models only make... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 163 |
| SubjectTerms | Alzheimer's disease Artificial neural networks Biological system modeling Computational modeling Diseases Drug repositioning drug-disease association Drugs graph representation learning Graph representations Graphical representations higher and lower-order information information fusion Learning Neoplasms Predictive models Proteins Representation learning |
| Title | Fusing Higher and Lower-Order Biological Information for Drug Repositioning via Graph Representation Learning |
| URI | https://ieeexplore.ieee.org/document/10034475 https://www.proquest.com/docview/2969049783 |
| Volume | 12 |
| WOSCitedRecordID | wos001188348600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-6750 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816967 issn: 2168-6750 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCZu8aAHf844nYaDJxMmLRTK0ajTwzI9TLNbA4UuS7Saue3vt6-wucRo4o20QBq-Ao_He9-H0EWuKyvEKU4iZSnhJhXEVEslMVyZxPJC09p18dKXg0E6GqmnkKxe58I45-rgM9eFYn2Xb9_zObjKqhnuCeoaqCGl9MlaK4cKKEgoIcPNZUTV1fBueNMFefAugwxOoMtc23tqMZUfK3C9rfR2__lBe2gn2I_42gO-jzZceYC211gFD9FbD4LZx9iHcGBdWtwHLTTyCDSb2KtPAjY45CIBNrgq4dvpfIzBJPeBXNDJYqLxPZBaw_PvVKUSB2LWcQs996oReCBBVYHkseIzEoPFRQshlU2kTJ3mOmYy0SIyTDDDNLOUcyuSxBZC2Op4khoT6yKWQhipGTtCzfK9dMcIgznIbFS9sznPkzQVUpvExY7qIolc3EZ0Od5ZHijHQfniNauPHlRlAFEGEGUBoja6XDX58Hwbf1VuASZrFT0cbdRZopqFKfmZxUooCnp67OSXZqdoq-qdewdLBzVn07k7Q5v5Yjb5nJ7Xf9sXvhnTUA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH5iMGnjsLHRiQJjPuw0KcXxz_iI2ApopXDoELfIjp0KCQIqLX8_ebFhldAmcbMSO4n8xfbz83vfB_C9sq0VEozIcuNpJlyhMtdOlZkTxkkvaks718XFSI_HxeWlOU_J6l0uTAihCz4LAyx2Z_n-tlqgq6wd4ZGg7g2sSSFYHtO1nl0qqCFhlE5nlzk1-5Nfk8MBCoQPOOZwImHm0urTyam8mIO7hWX48ZWftAEfkgVJDiLkn2AlNJ9hfYlXcBNuhhjOPiUxiIPYxpMRqqFlZ0i0SaL-JKJDUjYSokPaEvk5W0wJGuUxlAsf8nBlyRHSWuP1v8lKDUnUrNMe_Bm2PXCcJV2FrGJGzDOGNhetlTZeal0EKyzjWlqVO66445Z7KoRXUvpaKd9uUArnmK2ZVsppy_kXWG1um7AFBA1C7vP2nq9EJYtCaetkYIHaWuaB9YE-9XdZJdJx1L64LrvNBzUlQlQiRGWCqA8_npvcRcaN_1XuISZLFSMcfdh9QrVMg_K-ZEYZiop6fPsfzb7Bu-PJ6agcnYx_78D79k0iult2YXU-W4Sv8LZ6mF_dz_a6P-8R4rzWlw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusing+Higher+and+Lower-Order+Biological+Information+for+Drug+Repositioning+via+Graph+Representation+Learning&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computing&rft.au=Zhao%2C+Bo-Wei&rft.au=Wang%2C+Lei&rft.au=Hu%2C+Peng-Wei&rft.au=Wong%2C+Leon&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2168-6750&rft.volume=12&rft.issue=1&rft.spage=163&rft.epage=176&rft_id=info:doi/10.1109%2FTETC.2023.3239949&rft.externalDocID=10034475 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-6750&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-6750&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-6750&client=summon |