Channel Parameter and Read Reference Voltages Estimation in 3-D NAND Flash Memory Using Unsupervised Learning Algorithms
In 3-D NAND flash memory, the channel is always offset due to the complicated interference from the program/erase (PE), including the data retention and layer interference, so that the channel estimation is desired. However, due to the physical structure of 3-D flash memory, there exists significant...
Saved in:
| Published in: | IEEE transactions on computer-aided design of integrated circuits and systems Vol. 43; no. 1; pp. 305 - 318 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0278-0070, 1937-4151 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In 3-D NAND flash memory, the channel is always offset due to the complicated interference from the program/erase (PE), including the data retention and layer interference, so that the channel estimation is desired. However, due to the physical structure of 3-D flash memory, there exists significant variation in channel parameters and inconsistent channel offsets among different wordlines. As a result, the process of estimating channel parameters for each individual wordline typically requires a considerable amount of computational resources, resulting in the high latency of system, which becomes a new challenge. To tackle this problem, two unsupervised learning algorithms are proposed to estimate the channel parameters, based on analyzing the error distribution in 3-D flash memory. To address the longer read latency introduced by the unsupervised learning algorithm for the channel estimation, we further propose a low-latency detection algorithm, which first detects whether the current channel needs to be updated. In the event that an update is required, the algorithm only periodically estimates the channel parameters during system idle times, resulting in a more efficient and streamlined process. Compared to the existing methods, the proposed algorithms can efficiently estimate channel parameters with lower-computational complexity. Moreover, combining with the search algorithm, a correction scheme is proposed to minimize the error between the estimated read reference voltage (RRV) and the optimal RRV in the actual device. Theoretical analysis and simulation results demonstrate that the proposed method can improve the lifetime of flash memory and reduces the number of read retries. |
|---|---|
| AbstractList | In 3-D NAND flash memory, the channel is always offset due to the complicated interference from the program/erase (PE), including the data retention and layer interference, so that the channel estimation is desired. However, due to the physical structure of 3-D flash memory, there exists significant variation in channel parameters and inconsistent channel offsets among different wordlines. As a result, the process of estimating channel parameters for each individual wordline typically requires a considerable amount of computational resources, resulting in the high latency of system, which becomes a new challenge. To tackle this problem, two unsupervised learning algorithms are proposed to estimate the channel parameters, based on analyzing the error distribution in 3-D flash memory. To address the longer read latency introduced by the unsupervised learning algorithm for the channel estimation, we further propose a low-latency detection algorithm, which first detects whether the current channel needs to be updated. In the event that an update is required, the algorithm only periodically estimates the channel parameters during system idle times, resulting in a more efficient and streamlined process. Compared to the existing methods, the proposed algorithms can efficiently estimate channel parameters with lower-computational complexity. Moreover, combining with the search algorithm, a correction scheme is proposed to minimize the error between the estimated read reference voltage (RRV) and the optimal RRV in the actual device. Theoretical analysis and simulation results demonstrate that the proposed method can improve the lifetime of flash memory and reduces the number of read retries. |
| Author | Wu, Wenhua Hu, Haihua Han, Guojun Liu, Chang |
| Author_xml | – sequence: 1 givenname: Haihua surname: Hu fullname: Hu, Haihua email: haihua@mail2.gdut.edu.cn organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China – sequence: 2 givenname: Guojun orcidid: 0000-0003-2480-8066 surname: Han fullname: Han, Guojun email: gjhan@gdut.edu.cn organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China – sequence: 3 givenname: Wenhua orcidid: 0000-0002-4809-8823 surname: Wu fullname: Wu, Wenhua email: wuwh_gdut@gdut.edu.cn organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China – sequence: 4 givenname: Chang orcidid: 0000-0002-2827-1019 surname: Liu fullname: Liu, Chang email: liuchang@gdut.edu.cn organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China |
| BookMark | eNp9kE1PAjEQhhuDiYj-ABMPTTwv9mu_joQPNUE0BrxuSncKJUsX22Lk37srHIwHL52k8z4zmecSdWxtAaEbSvqUkvx-PhyM-oww3uecJHmanaEuzXkaCRrTDuoSlmYRISm5QJfebwihImZ5F30N19JaqPCrdHILARyWtsRvINtHgwOrAL_XVZAr8Hjsg9nKYGqLjcU8GuHZYDbCk0r6NX6Gbe0OeOGNXeGF9fsduE_jocRTkM62v4NqVTsT1lt_hc61rDxcn2oPLSbj-fAxmr48PA0H00ixXISIAsSQaUV0lqtYyrTUOs-EAKJjygXTfFmmCctoSaVYpgrKRJVCAU9osmR6yXvo7jh35-qPPfhQbOq9s83KguVEJFksSNKk0mNKudp7B7pQJvzcGZw0VUFJ0WouWs1Fq7k4aW5I-ofcuUaRO_zL3B4ZAwC_8ozFcdP-BjZJi4o |
| CODEN | ITCSDI |
| CitedBy_id | crossref_primary_10_1109_TCE_2024_3459892 crossref_primary_10_3390_e26090781 crossref_primary_10_1109_LSP_2024_3521326 |
| Cites_doi | 10.1109/TVLSI.2019.2912228 10.1109/TCSI.2017.2714902 10.1109/TED.2020.3030867 10.1109/TCAD.2020.3012646 10.1109/TSP.2013.2295056 10.1587/elex.14.20170820 10.1109/TCAD.2021.3123288 10.1109/TCSI.2020.3047484 10.1109/JSSC.2018.2884949 10.1109/LES.2021.3081738 10.1109/TSP.2012.2222399 10.1109/LCOMM.2019.2900677 10.7873/DATE.2013.266 10.1109/TCSII.2019.2935031 10.1109/JPROC.2017.2713127 10.1109/DSN.2015.49 10.1109/JSSC.2017.2731813 10.1109/ACCESS.2020.2983433 10.1109/TCOMM.2015.2453413 10.1109/TED.2016.2593913 10.1145/3224432 10.1109/TC.2019.2959318 10.1109/MICRO50266.2020.00048 10.1109/JSAC.2014.140508 10.3390/mi12080879 10.1109/HPCA.2015.7056062 10.1109/TCE.2021.3066524 10.1109/TCOMM.2020.2974723 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCAD.2023.3306978 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1937-4151 |
| EndPage | 318 |
| ExternalDocumentID | 10_1109_TCAD_2023_3306978 10225578 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Key-Area Research and Development Program of Guandong Province grantid: 2021B1101270001 – fundername: Guangzhou Science and Technology Plan Project grantid: 202201010239 – fundername: Guangdong Introducing Innovative and Entrepreneurial Teams of “The Pearl River Talent Recruitment Program” grantid: 2021ZT09X044 – fundername: National Natural Science Foundation of China grantid: U2001203; 61871136 funderid: 10.13039/501100001809 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2022A1515110602; 2023A1515012189 funderid: 10.13039/501100021171 – fundername: Guangdong Introducing Outstanding Young Scholars of “The Pearl River Talent Recruitment Program” grantid: 2021QN02X546 |
| GroupedDBID | --Z -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PZZ RIA RIE RNS TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-1ee5e8fc0f89c5aa7dff9844e0f51342f3bd76281d1a4b7ced6cd4ce3616b2fb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001129816700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0070 |
| IngestDate | Mon Jun 30 08:15:50 EDT 2025 Sat Nov 29 03:31:52 EST 2025 Tue Nov 18 22:27:43 EST 2025 Wed Aug 27 02:33:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-1ee5e8fc0f89c5aa7dff9844e0f51342f3bd76281d1a4b7ced6cd4ce3616b2fb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4809-8823 0000-0002-2827-1019 0000-0003-2480-8066 |
| PQID | 2904685406 |
| PQPubID | 85470 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_10225578 proquest_journals_2904685406 crossref_primary_10_1109_TCAD_2023_3306978 crossref_citationtrail_10_1109_TCAD_2023_3306978 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Jan. 2024-1-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on computer-aided design of integrated circuits and systems |
| PublicationTitleAbbrev | TCAD |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 Dai (ref23) 2022 ref18 ref24 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Luo (ref29) 2018 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref9 doi: 10.1109/TVLSI.2019.2912228 – ident: ref20 doi: 10.1109/TCSI.2017.2714902 – ident: ref2 doi: 10.1109/TED.2020.3030867 – ident: ref1 doi: 10.1109/TCAD.2020.3012646 – ident: ref19 doi: 10.1109/TSP.2013.2295056 – ident: ref28 doi: 10.1587/elex.14.20170820 – ident: ref8 doi: 10.1109/TCAD.2021.3123288 – ident: ref4 doi: 10.1109/TCSI.2020.3047484 – ident: ref24 doi: 10.1109/JSSC.2018.2884949 – volume-title: Architectural Techniques for Improving NAND Flash Memory Reliability year: 2018 ident: ref29 – ident: ref15 doi: 10.1109/LES.2021.3081738 – ident: ref17 doi: 10.1109/TSP.2012.2222399 – ident: ref16 doi: 10.1109/LCOMM.2019.2900677 – ident: ref26 doi: 10.7873/DATE.2013.266 – ident: ref12 doi: 10.1109/TCSII.2019.2935031 – ident: ref22 doi: 10.1109/JPROC.2017.2713127 – ident: ref30 doi: 10.1109/DSN.2015.49 – ident: ref5 doi: 10.1109/JSSC.2017.2731813 – ident: ref7 doi: 10.1109/ACCESS.2020.2983433 – ident: ref18 doi: 10.1109/TCOMM.2015.2453413 – ident: ref25 doi: 10.1109/TED.2016.2593913 – ident: ref10 doi: 10.1145/3224432 – ident: ref14 doi: 10.1109/TC.2019.2959318 – ident: ref3 doi: 10.1109/MICRO50266.2020.00048 – ident: ref27 doi: 10.1109/JSAC.2014.140508 – ident: ref13 doi: 10.3390/mi12080879 – year: 2022 ident: ref23 article-title: Design of protograph LDPC-coded MIMO-VLC systems with generalized spatial modulation publication-title: arXiv:2210.16007 – ident: ref21 doi: 10.1109/HPCA.2015.7056062 – ident: ref6 doi: 10.1109/TCE.2021.3066524 – ident: ref11 doi: 10.1109/TCOMM.2020.2974723 |
| SSID | ssj0014529 |
| Score | 2.4286582 |
| Snippet | In 3-D NAND flash memory, the channel is always offset due to the complicated interference from the program/erase (PE), including the data retention and layer... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 305 |
| SubjectTerms | 3-D NAND flash memory Algorithms Channel estimation Error analysis Error correction Estimation Flash memories Flash memory (computers) Interference low complexity Machine learning Memory Parameter estimation Parameters read reference voltage (RRV) Search algorithms Threshold voltage Unsupervised learning unsupervised learning algorithm |
| Title | Channel Parameter and Read Reference Voltages Estimation in 3-D NAND Flash Memory Using Unsupervised Learning Algorithms |
| URI | https://ieeexplore.ieee.org/document/10225578 https://www.proquest.com/docview/2904685406 |
| Volume | 43 |
| WOSCitedRecordID | wos001129816700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1937-4151 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014529 issn: 0278-0070 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAMcDAG1FeuoEJKSUP5-GxolQMUHUoiC1KHLutVJKqSRH8e-6ctKqEQGLLYEeJv_P5zvf4GLtRkXao4sMKpPQsjhaRhYeCttA61X5K7BaGP-X1Kez3o7c3MWiK1U0tjFLKJJ-pNj2aWH5WyAVdld2Rd-KjiG2yzTAM6mKtVciAIojmQoVaxqIgNyFMxxZ3Q_yrNvGEt9F7Dwyl2tohZFhVfqhic7709v_5ZQdsrzEkoVMjf8g2VH7EdtfaCx6zTyodyNUUBgmlYOEKQpJnQHnzsGowC6_FtEKlUsID7va6kBEmOXhWF_qdfhd6aF-P4Zkycr_AZBjAS14uZqRkSpVB06F1BJ3pqJhPqvF7ecJeeg_D-0erYVqwpCt4ZTlK-YiatHUkpJ8kYaa1iDhXtvYdj7vaSzPUmoikk_A0lCoLZMal8gInSF2deqdsKy9ydcYgRBtGuJEWXoauZ5qkEj2SyJU-yopyQtli9nLpY9m0ISc2jGls3BFbxIRWTGjFDVotdruaMqt7cPw1-ITgWRtYI9Nil0uA42ablrErbB5EaLQG579Mu2A7-HZeX7pcsq1qvlBXbFt-VJNyfm0k8Bu1D9hT |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6Vh0Q5AAWqpqVlDj0hOfixfuwxKkRUDRaHgLhZ9noXIqUOih0E_74zaxNFQiD15sOubO83Ozuz8_gAfurEeFzx4URKBY4gi8ihQ8E4ZJ2asGB2C8ufcjOK0zS5vZVXXbG6rYXRWtvkM93nRxvLL2dqwVdlp-ydhCRia7ARCuG7bbnWMmjAMUR7pcJNY0mUuyCm58rTMf1Xn5nC--S_R5ZUbeUYsrwqr5SxPWGGu__5bXuw05mSOGix_wQfdLUP2ysNBg_giYsHKj3Fq5yTsGgNMa9K5Mx5XLaYxZvZtCG1UuM57fe2lBEnFQbOGaaD9AyHZGHf4yXn5D6jzTHA66pePLCaqXWJXY_WOxxM72bzSXP_tz6E6-H5-NeF03EtOMqXonE8rUPCTbkmkSrM87g0RiZCaNeEXiB8ExQl6U3C0stFEStdRqoUSgeRFxW-KYLPsF7NKv0FMCYrRvqJkUFJzmeRF4p8ksRXIUmL9mLVA_dl6TPVNSJnPoxpZh0SV2aMVsZoZR1aPThZTnlou3C8N_iQ4VkZ2CLTg6MXgLNuo9aZL10RJWS2Rl_fmHYMWxfjy1E2-p3--QYf6U2ivYI5gvVmvtDfYVM9NpN6_sNK4z8cUdua |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Channel+Parameter+and+Read+Reference+Voltages+Estimation+in+3-D+NAND+Flash+Memory+Using+Unsupervised+Learning+Algorithms&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Hu%2C+Haihua&rft.au=Han%2C+Guojun&rft.au=Wu%2C+Wenhua&rft.au=Liu%2C+Chang&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=0278-0070&rft.volume=43&rft.issue=1&rft.spage=305&rft.epage=318&rft_id=info:doi/10.1109%2FTCAD.2023.3306978&rft.externalDocID=10225578 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon |