3-D In-Sensor Computing for Real-Time DVS Data Compression: 65-nm Hardware-Algorithm Co-Design

Traditional IO links are insufficient to transport high volume of image sensor data, under stringent power and latency constraints. To address this, we demonstrate a low latency, low power in-sensor computing architecture to compress the data from a 3D-stacked dynamic vision sensor (DVS). In this de...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE solid-state circuits letters Ročník 7; s. 119 - 122
Hlavní autoři: Nair, Gopikrishnan R., Nalla, Pragnya S., Krishnan, Gokul, Anupreetham, Oh, Jonghyun, Hassan, Ahmed, Yeo, Injune, Kasichainula, Kishore, Seok, Mingoo, Seo, Jae-Sun, Cao, Yu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2573-9603, 2573-9603
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Traditional IO links are insufficient to transport high volume of image sensor data, under stringent power and latency constraints. To address this, we demonstrate a low latency, low power in-sensor computing architecture to compress the data from a 3D-stacked dynamic vision sensor (DVS). In this design, we adopt a 4-bit autoencoder algorithm and implement it on an AI computing layer with in-memory computing (IMC) to enable real-time compression of DVS data. To support 3-D integration, this architecture is optimized to handle the unique constraints, including footprint to match the size of the sensor array, low latency to manage the continuous data stream, and low-power consumption to avoid thermal issues. Our prototype chip in 65-nm CMOS demonstrates the new concept of 3-D in-sensor computing, achieving < 6 mW power consumption at 1-10 MHz operating frequency, and<inline-formula> <tex-math notation="LaTeX">10\times </tex-math></inline-formula> compression ratio on <inline-formula> <tex-math notation="LaTeX">256\times 256 </tex-math></inline-formula> DVS pixels.
AbstractList Traditional IO links are insufficient to transport high volume of image sensor data, under stringent power and latency constraints. To address this, we demonstrate a low latency, low power in-sensor computing architecture to compress the data from a 3D-stacked dynamic vision sensor (DVS). In this design, we adopt a 4-bit autoencoder algorithm and implement it on an AI computing layer with in-memory computing (IMC) to enable real-time compression of DVS data. To support 3-D integration, this architecture is optimized to handle the unique constraints, including footprint to match the size of the sensor array, low latency to manage the continuous data stream, and low-power consumption to avoid thermal issues. Our prototype chip in 65-nm CMOS demonstrates the new concept of 3-D in-sensor computing, achieving
Traditional IO links are insufficient to transport high volume of image sensor data, under stringent power and latency constraints. To address this, we demonstrate a low latency, low power in-sensor computing architecture to compress the data from a 3D-stacked dynamic vision sensor (DVS). In this design, we adopt a 4-bit autoencoder algorithm and implement it on an AI computing layer with in-memory computing (IMC) to enable real-time compression of DVS data. To support 3-D integration, this architecture is optimized to handle the unique constraints, including footprint to match the size of the sensor array, low latency to manage the continuous data stream, and low-power consumption to avoid thermal issues. Our prototype chip in 65-nm CMOS demonstrates the new concept of 3-D in-sensor computing, achieving < 6 mW power consumption at 1-10 MHz operating frequency, and<inline-formula> <tex-math notation="LaTeX">10\times </tex-math></inline-formula> compression ratio on <inline-formula> <tex-math notation="LaTeX">256\times 256 </tex-math></inline-formula> DVS pixels.
Author Seo, Jae-Sun
Oh, Jonghyun
Nair, Gopikrishnan R.
Krishnan, Gokul
Anupreetham
Seok, Mingoo
Nalla, Pragnya S.
Cao, Yu
Yeo, Injune
Kasichainula, Kishore
Hassan, Ahmed
Author_xml – sequence: 1
  givenname: Gopikrishnan R.
  orcidid: 0000-0002-9694-4529
  surname: Nair
  fullname: Nair, Gopikrishnan R.
  email: ravee013@umn.edu
  organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
– sequence: 2
  givenname: Pragnya S.
  orcidid: 0009-0006-3688-6941
  surname: Nalla
  fullname: Nalla, Pragnya S.
  organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
– sequence: 3
  givenname: Gokul
  orcidid: 0000-0003-1813-1140
  surname: Krishnan
  fullname: Krishnan, Gokul
  organization: Department of Electrical Engineering, Arizona State Univeristy, Tempe, AZ, USA
– sequence: 4
  surname: Anupreetham
  fullname: Anupreetham
  organization: School of Electrical and Computer Engineering, Cornell Tech, New York, NY, USA
– sequence: 5
  givenname: Jonghyun
  orcidid: 0000-0003-0459-577X
  surname: Oh
  fullname: Oh, Jonghyun
  organization: Department of Electrical Engineering, Columbia University, New York, NY, USA
– sequence: 6
  givenname: Ahmed
  surname: Hassan
  fullname: Hassan, Ahmed
  organization: School of Electrical and Computer Engineering, Cornell Tech, New York, NY, USA
– sequence: 7
  givenname: Injune
  orcidid: 0000-0002-4596-6170
  surname: Yeo
  fullname: Yeo, Injune
  organization: Department of Electrical Engineering, Chosun University, Gwangju, Republic of Korea
– sequence: 8
  givenname: Kishore
  surname: Kasichainula
  fullname: Kasichainula, Kishore
  organization: Department of Electrical Engineering, Arizona State Univeristy, Tempe, AZ, USA
– sequence: 9
  givenname: Mingoo
  orcidid: 0000-0002-9722-0979
  surname: Seok
  fullname: Seok, Mingoo
  organization: Department of Electrical Engineering, Columbia University, New York, NY, USA
– sequence: 10
  givenname: Jae-Sun
  orcidid: 0000-0002-4551-7789
  surname: Seo
  fullname: Seo, Jae-Sun
  organization: School of Electrical and Computer Engineering, Cornell Tech, New York, NY, USA
– sequence: 11
  givenname: Yu
  orcidid: 0000-0001-6968-1180
  surname: Cao
  fullname: Cao, Yu
  organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
BookMark eNp9kMFLwzAUxoNMcM79AYKHgufMpEnaxtvo1A0Ggp0eDUmXzow2nUmG-N_buh2GB0_vvY_f9x7vuwQD21oNwDVGE4wRv1sWRT6JUUwnhKSsk87AMGYpgTxBZHDSX4Cx91uEEOY4ISgbgncCZ9HCwkJb37oob5vdPhi7iapuetGyhivT6Gj2VkQzGeQv4LT3prX3UcKgbaK5dOsv6TSc1pvWmfDRdBScaW829gqcV7L2enysI_D6-LDK53D5_LTIp0tYxpwGiHXC1imtkpLLNWFpiiQty7ITaZZVTFaxVEoRQlWVKqq4wqrDFGc0YalWnIzA7WHvzrWfe-2D2LZ7Z7uTgiDC4oxw3FPpgSpd673TlShNkKH7JThpaoGR6PMUfZ6iz1Mc8-yc-I9z50wj3fe_npuDx2itT3iakARn5AdgTID_
CODEN ISCLCN
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3511492
crossref_primary_10_1109_TCAD_2025_3531348
Cites_doi 10.1109/IEDM45625.2022.10019406
10.1109/ISSCC19947.2020.9062985
10.1109/TED.2017.2717848
10.1109/A-SSCC56115.2022.9980613
10.1145/3579371.3589064
10.1109/ISSCC42613.2021.9365958
10.1109/TPAMI.2020.3008413
10.1109/ISSCC42613.2021.9365788
10.1109/A-SSCC58667.2023.10347978
10.3390/s21030926
10.23919/DATE56975.2023.10137076
10.1145/3527156
10.1109/IEEECONF56349.2022.10051946
10.1109/JETCAS.2022.3169899
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LSSC.2024.3375110
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2573-9603
EndPage 122
ExternalDocumentID 10_1109_LSSC_2024_3375110
10463618
Genre orig-research
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency (DARPA)
  grantid: HR001121C0134
  funderid: 10.13039/100000185
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
M43
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c294t-1e65d74f6c9ad35770a4ccc65d488f5af2abbb334bf7b4b9b1bd35b954657eb93
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001200000800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2573-9603
IngestDate Sun Nov 30 05:15:01 EST 2025
Tue Nov 18 21:26:41 EST 2025
Sat Nov 29 02:20:58 EST 2025
Wed Aug 27 02:09:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-1e65d74f6c9ad35770a4ccc65d488f5af2abbb334bf7b4b9b1bd35b954657eb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4596-6170
0000-0002-9694-4529
0000-0002-9722-0979
0000-0002-4551-7789
0000-0003-0459-577X
0000-0001-6968-1180
0000-0003-1813-1140
0009-0006-3688-6941
PQID 3035283919
PQPubID 4437222
PageCount 4
ParticipantIDs crossref_citationtrail_10_1109_LSSC_2024_3375110
crossref_primary_10_1109_LSSC_2024_3375110
ieee_primary_10463618
proquest_journals_3035283919
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE solid-state circuits letters
PublicationTitleAbbrev LSSC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
Yan (ref10)
ref11
(ref3) 2023
ref2
ref1
ref16
ref8
ref7
ref9
ref4
ref6
ref5
References_xml – ident: ref5
  doi: 10.1109/IEDM45625.2022.10019406
– ident: ref13
  doi: 10.1109/ISSCC19947.2020.9062985
– ident: ref11
  doi: 10.1109/TED.2017.2717848
– ident: ref16
  doi: 10.1109/A-SSCC56115.2022.9980613
– ident: ref2
  doi: 10.1145/3579371.3589064
– ident: ref15
  doi: 10.1109/ISSCC42613.2021.9365958
– ident: ref1
  doi: 10.1109/TPAMI.2020.3008413
– ident: ref14
  doi: 10.1109/ISSCC42613.2021.9365788
– ident: ref4
  doi: 10.1109/A-SSCC58667.2023.10347978
– ident: ref12
  doi: 10.3390/s21030926
– ident: ref8
  doi: 10.23919/DATE56975.2023.10137076
– ident: ref7
  doi: 10.1145/3527156
– ident: ref6
  doi: 10.1109/IEEECONF56349.2022.10051946
– ident: ref9
  doi: 10.1109/JETCAS.2022.3169899
– start-page: 188
  volume-title: Proc. ISSCC
  ident: ref10
  article-title: A 1.041-Mb/mm2 27.38-TOPS/W signed-INT8 dynamic-logic-based ADC-less SRAM compute-in-memory macro in 28nm with reconfigurable bitwise operation for AI and embedded applications
– volume-title: An introductory guide to MIPI automotive SerDes solutions (MASS)
  year: 2023
  ident: ref3
SSID ssj0001916308
Score 2.2773716
Snippet Traditional IO links are insufficient to transport high volume of image sensor data, under stringent power and latency constraints. To address this, we...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119
SubjectTerms 3-D stacking
Algorithms
Artificial intelligence
Co-design
Computer architecture
Data compression
Data transmission
dynamic vision sensor (DVS)
in-memory computing (IMC)
in-sensor computing
Power consumption
Power management
Real time
Semiconductor device measurement
Sensor arrays
Three-dimensional displays
Through-silicon vias
Time compression
Voltage control
Weight measurement
Title 3-D In-Sensor Computing for Real-Time DVS Data Compression: 65-nm Hardware-Algorithm Co-Design
URI https://ieeexplore.ieee.org/document/10463618
https://www.proquest.com/docview/3035283919
Volume 7
WOSCitedRecordID wos001200000800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2573-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001916308
  issn: 2573-9603
  databaseCode: RIE
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86PHjxAydOp-TgSciWNunSeBurQ0GGWJWdLEma6mDrpOv03zdJOz8QBW-lvJSQl9f3e98AnLrcwZCkyChzjWgaGJFSmiKSMk_4LOwxlbphE2w0CsdjflMXq7taGK21Sz7THfvoYvnpXC2tq6zrufZWXrgO1hljVbHWp0PFAB2Cwzpy6WHevY7jgbEAfdohhJm94G-6xw1T-fEHdmpluP3PDe2ArRo_wn7F8F2wpvM98EhQBK9yFBubdF7AalKD0UnQIFJ4a6AgspUeMHqIYSRK4Qiq_Nf8HPYClM-gjeC_iUKj_vRpXkzK55mhQpHL72iC--HF3eAS1YMTkPI5LZGne0HKaNZTXKQkYAwLqpQyL424ZoHIfCGlJITKjEkqufSkIZPcDkZnWnKyDxr5PNcHALJMaaIJpiqjVONASIOIpM8MjFKCZrIF8OpIE1V3FbfDLaaJsy4wTywXEsuFpOZCC5x9LHmpWmr8Rdy0x_6FsDrxFmivGJfUUrdICHa9arjHD39ZdgQ27dcrH0obNMpiqY_BhnotJ4vixF2od6klx64
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA7eQF-84MR5zYNPQra0SZvGN7GKwznETdmTJUlTHWyd1Kp_3yStN0TBt1JOaMjJ6fnOHYADlzsYkRQZZa4RTQMjUkpTRFLmCZ9FIVOpGzbBer1oOORXdbG6q4XRWrvkM92yjy6Wn07Vs3WVtT3X3sqLZsF8QKnvVeVany4VA3UIjurYpYd5u9vvnxgb0KctQpjZDf6mfdw4lR__YKdYzlb-uaVVsFwjSHhcsXwNzOh8HdwRFMNOjvrGKp0WsJrVYLQSNJgUXhswiGytB4xv-zAWpXAEVQZsfgTDAOUTaGP4r6LQ6Hh8Py1G5cPEUKHYZXg0wM3Z6eDkHNWjE5DyOS2Rp8MgZTQLFRcpCRjDgiqlzEsjsFkgMl9IKQmhMmOSSi49acgkt6PRmZacbIC5fJrrTQBZpjTRBFOVUapxIKTBRNJnBkgpQTPZBPj9SBNV9xW34y3GibMvME8sFxLLhaTmQhMcfix5rJpq_EXcsMf-hbA68SbYeWdcUsvdU0Kw61bDPb71y7J9sHg-uOwm3U7vYhss2S9VHpUdMFcWz3oXLKiXcvRU7LnL9QY2_cr1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-D+In-Sensor+Computing+for+Real-Time+DVS+Data+Compression%3A+65-nm+Hardware-Algorithm+Co-Design&rft.jtitle=IEEE+solid-state+circuits+letters&rft.au=Nair%2C+Gopikrishnan+R.&rft.au=Nalla%2C+Pragnya+S.&rft.au=Krishnan%2C+Gokul&rft.au=Anupreetham&rft.date=2024&rft.pub=IEEE&rft.eissn=2573-9603&rft.volume=7&rft.spage=119&rft.epage=122&rft_id=info:doi/10.1109%2FLSSC.2024.3375110&rft.externalDocID=10463618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2573-9603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2573-9603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2573-9603&client=summon