3-D In-Sensor Computing for Real-Time DVS Data Compression: 65-nm Hardware-Algorithm Co-Design
Traditional IO links are insufficient to transport high volume of image sensor data, under stringent power and latency constraints. To address this, we demonstrate a low latency, low power in-sensor computing architecture to compress the data from a 3D-stacked dynamic vision sensor (DVS). In this de...
Uloženo v:
| Vydáno v: | IEEE solid-state circuits letters Ročník 7; s. 119 - 122 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2573-9603, 2573-9603 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Traditional IO links are insufficient to transport high volume of image sensor data, under stringent power and latency constraints. To address this, we demonstrate a low latency, low power in-sensor computing architecture to compress the data from a 3D-stacked dynamic vision sensor (DVS). In this design, we adopt a 4-bit autoencoder algorithm and implement it on an AI computing layer with in-memory computing (IMC) to enable real-time compression of DVS data. To support 3-D integration, this architecture is optimized to handle the unique constraints, including footprint to match the size of the sensor array, low latency to manage the continuous data stream, and low-power consumption to avoid thermal issues. Our prototype chip in 65-nm CMOS demonstrates the new concept of 3-D in-sensor computing, achieving < 6 mW power consumption at 1-10 MHz operating frequency, and<inline-formula> <tex-math notation="LaTeX">10\times </tex-math></inline-formula> compression ratio on <inline-formula> <tex-math notation="LaTeX">256\times 256 </tex-math></inline-formula> DVS pixels. |
|---|---|
| AbstractList | Traditional IO links are insufficient to transport high volume of image sensor data, under stringent power and latency constraints. To address this, we demonstrate a low latency, low power in-sensor computing architecture to compress the data from a 3D-stacked dynamic vision sensor (DVS). In this design, we adopt a 4-bit autoencoder algorithm and implement it on an AI computing layer with in-memory computing (IMC) to enable real-time compression of DVS data. To support 3-D integration, this architecture is optimized to handle the unique constraints, including footprint to match the size of the sensor array, low latency to manage the continuous data stream, and low-power consumption to avoid thermal issues. Our prototype chip in 65-nm CMOS demonstrates the new concept of 3-D in-sensor computing, achieving Traditional IO links are insufficient to transport high volume of image sensor data, under stringent power and latency constraints. To address this, we demonstrate a low latency, low power in-sensor computing architecture to compress the data from a 3D-stacked dynamic vision sensor (DVS). In this design, we adopt a 4-bit autoencoder algorithm and implement it on an AI computing layer with in-memory computing (IMC) to enable real-time compression of DVS data. To support 3-D integration, this architecture is optimized to handle the unique constraints, including footprint to match the size of the sensor array, low latency to manage the continuous data stream, and low-power consumption to avoid thermal issues. Our prototype chip in 65-nm CMOS demonstrates the new concept of 3-D in-sensor computing, achieving < 6 mW power consumption at 1-10 MHz operating frequency, and<inline-formula> <tex-math notation="LaTeX">10\times </tex-math></inline-formula> compression ratio on <inline-formula> <tex-math notation="LaTeX">256\times 256 </tex-math></inline-formula> DVS pixels. |
| Author | Seo, Jae-Sun Oh, Jonghyun Nair, Gopikrishnan R. Krishnan, Gokul Anupreetham Seok, Mingoo Nalla, Pragnya S. Cao, Yu Yeo, Injune Kasichainula, Kishore Hassan, Ahmed |
| Author_xml | – sequence: 1 givenname: Gopikrishnan R. orcidid: 0000-0002-9694-4529 surname: Nair fullname: Nair, Gopikrishnan R. email: ravee013@umn.edu organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA – sequence: 2 givenname: Pragnya S. orcidid: 0009-0006-3688-6941 surname: Nalla fullname: Nalla, Pragnya S. organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA – sequence: 3 givenname: Gokul orcidid: 0000-0003-1813-1140 surname: Krishnan fullname: Krishnan, Gokul organization: Department of Electrical Engineering, Arizona State Univeristy, Tempe, AZ, USA – sequence: 4 surname: Anupreetham fullname: Anupreetham organization: School of Electrical and Computer Engineering, Cornell Tech, New York, NY, USA – sequence: 5 givenname: Jonghyun orcidid: 0000-0003-0459-577X surname: Oh fullname: Oh, Jonghyun organization: Department of Electrical Engineering, Columbia University, New York, NY, USA – sequence: 6 givenname: Ahmed surname: Hassan fullname: Hassan, Ahmed organization: School of Electrical and Computer Engineering, Cornell Tech, New York, NY, USA – sequence: 7 givenname: Injune orcidid: 0000-0002-4596-6170 surname: Yeo fullname: Yeo, Injune organization: Department of Electrical Engineering, Chosun University, Gwangju, Republic of Korea – sequence: 8 givenname: Kishore surname: Kasichainula fullname: Kasichainula, Kishore organization: Department of Electrical Engineering, Arizona State Univeristy, Tempe, AZ, USA – sequence: 9 givenname: Mingoo orcidid: 0000-0002-9722-0979 surname: Seok fullname: Seok, Mingoo organization: Department of Electrical Engineering, Columbia University, New York, NY, USA – sequence: 10 givenname: Jae-Sun orcidid: 0000-0002-4551-7789 surname: Seo fullname: Seo, Jae-Sun organization: School of Electrical and Computer Engineering, Cornell Tech, New York, NY, USA – sequence: 11 givenname: Yu orcidid: 0000-0001-6968-1180 surname: Cao fullname: Cao, Yu organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA |
| BookMark | eNp9kMFLwzAUxoNMcM79AYKHgufMpEnaxtvo1A0Ggp0eDUmXzow2nUmG-N_buh2GB0_vvY_f9x7vuwQD21oNwDVGE4wRv1sWRT6JUUwnhKSsk87AMGYpgTxBZHDSX4Cx91uEEOY4ISgbgncCZ9HCwkJb37oob5vdPhi7iapuetGyhivT6Gj2VkQzGeQv4LT3prX3UcKgbaK5dOsv6TSc1pvWmfDRdBScaW829gqcV7L2enysI_D6-LDK53D5_LTIp0tYxpwGiHXC1imtkpLLNWFpiiQty7ITaZZVTFaxVEoRQlWVKqq4wqrDFGc0YalWnIzA7WHvzrWfe-2D2LZ7Z7uTgiDC4oxw3FPpgSpd673TlShNkKH7JThpaoGR6PMUfZ6iz1Mc8-yc-I9z50wj3fe_npuDx2itT3iakARn5AdgTID_ |
| CODEN | ISCLCN |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3511492 crossref_primary_10_1109_TCAD_2025_3531348 |
| Cites_doi | 10.1109/IEDM45625.2022.10019406 10.1109/ISSCC19947.2020.9062985 10.1109/TED.2017.2717848 10.1109/A-SSCC56115.2022.9980613 10.1145/3579371.3589064 10.1109/ISSCC42613.2021.9365958 10.1109/TPAMI.2020.3008413 10.1109/ISSCC42613.2021.9365788 10.1109/A-SSCC58667.2023.10347978 10.3390/s21030926 10.23919/DATE56975.2023.10137076 10.1145/3527156 10.1109/IEEECONF56349.2022.10051946 10.1109/JETCAS.2022.3169899 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/LSSC.2024.3375110 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2573-9603 |
| EndPage | 122 |
| ExternalDocumentID | 10_1109_LSSC_2024_3375110 10463618 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Defense Advanced Research Projects Agency (DARPA) grantid: HR001121C0134 funderid: 10.13039/100000185 |
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF M43 OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c294t-1e65d74f6c9ad35770a4ccc65d488f5af2abbb334bf7b4b9b1bd35b954657eb93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001200000800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2573-9603 |
| IngestDate | Sun Nov 30 05:15:01 EST 2025 Tue Nov 18 21:26:41 EST 2025 Sat Nov 29 02:20:58 EST 2025 Wed Aug 27 02:09:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-1e65d74f6c9ad35770a4ccc65d488f5af2abbb334bf7b4b9b1bd35b954657eb93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4596-6170 0000-0002-9694-4529 0000-0002-9722-0979 0000-0002-4551-7789 0000-0003-0459-577X 0000-0001-6968-1180 0000-0003-1813-1140 0009-0006-3688-6941 |
| PQID | 3035283919 |
| PQPubID | 4437222 |
| PageCount | 4 |
| ParticipantIDs | crossref_citationtrail_10_1109_LSSC_2024_3375110 crossref_primary_10_1109_LSSC_2024_3375110 ieee_primary_10463618 proquest_journals_3035283919 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE solid-state circuits letters |
| PublicationTitleAbbrev | LSSC |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 Yan (ref10) ref11 (ref3) 2023 ref2 ref1 ref16 ref8 ref7 ref9 ref4 ref6 ref5 |
| References_xml | – ident: ref5 doi: 10.1109/IEDM45625.2022.10019406 – ident: ref13 doi: 10.1109/ISSCC19947.2020.9062985 – ident: ref11 doi: 10.1109/TED.2017.2717848 – ident: ref16 doi: 10.1109/A-SSCC56115.2022.9980613 – ident: ref2 doi: 10.1145/3579371.3589064 – ident: ref15 doi: 10.1109/ISSCC42613.2021.9365958 – ident: ref1 doi: 10.1109/TPAMI.2020.3008413 – ident: ref14 doi: 10.1109/ISSCC42613.2021.9365788 – ident: ref4 doi: 10.1109/A-SSCC58667.2023.10347978 – ident: ref12 doi: 10.3390/s21030926 – ident: ref8 doi: 10.23919/DATE56975.2023.10137076 – ident: ref7 doi: 10.1145/3527156 – ident: ref6 doi: 10.1109/IEEECONF56349.2022.10051946 – ident: ref9 doi: 10.1109/JETCAS.2022.3169899 – start-page: 188 volume-title: Proc. ISSCC ident: ref10 article-title: A 1.041-Mb/mm2 27.38-TOPS/W signed-INT8 dynamic-logic-based ADC-less SRAM compute-in-memory macro in 28nm with reconfigurable bitwise operation for AI and embedded applications – volume-title: An introductory guide to MIPI automotive SerDes solutions (MASS) year: 2023 ident: ref3 |
| SSID | ssj0001916308 |
| Score | 2.2773716 |
| Snippet | Traditional IO links are insufficient to transport high volume of image sensor data, under stringent power and latency constraints. To address this, we... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 119 |
| SubjectTerms | 3-D stacking Algorithms Artificial intelligence Co-design Computer architecture Data compression Data transmission dynamic vision sensor (DVS) in-memory computing (IMC) in-sensor computing Power consumption Power management Real time Semiconductor device measurement Sensor arrays Three-dimensional displays Through-silicon vias Time compression Voltage control Weight measurement |
| Title | 3-D In-Sensor Computing for Real-Time DVS Data Compression: 65-nm Hardware-Algorithm Co-Design |
| URI | https://ieeexplore.ieee.org/document/10463618 https://www.proquest.com/docview/3035283919 |
| Volume | 7 |
| WOSCitedRecordID | wos001200000800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2573-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001916308 issn: 2573-9603 databaseCode: RIE dateStart: 20180101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86PHjxAydOp-TgSciWNunSeBurQ0GGWJWdLEma6mDrpOv03zdJOz8QBW-lvJSQl9f3e98AnLrcwZCkyChzjWgaGJFSmiKSMk_4LOwxlbphE2w0CsdjflMXq7taGK21Sz7THfvoYvnpXC2tq6zrufZWXrgO1hljVbHWp0PFAB2Cwzpy6WHevY7jgbEAfdohhJm94G-6xw1T-fEHdmpluP3PDe2ArRo_wn7F8F2wpvM98EhQBK9yFBubdF7AalKD0UnQIFJ4a6AgspUeMHqIYSRK4Qiq_Nf8HPYClM-gjeC_iUKj_vRpXkzK55mhQpHL72iC--HF3eAS1YMTkPI5LZGne0HKaNZTXKQkYAwLqpQyL424ZoHIfCGlJITKjEkqufSkIZPcDkZnWnKyDxr5PNcHALJMaaIJpiqjVONASIOIpM8MjFKCZrIF8OpIE1V3FbfDLaaJsy4wTywXEsuFpOZCC5x9LHmpWmr8Rdy0x_6FsDrxFmivGJfUUrdICHa9arjHD39ZdgQ27dcrH0obNMpiqY_BhnotJ4vixF2od6klx64 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA7eQF-84MR5zYNPQra0SZvGN7GKwznETdmTJUlTHWyd1Kp_3yStN0TBt1JOaMjJ6fnOHYADlzsYkRQZZa4RTQMjUkpTRFLmCZ9FIVOpGzbBer1oOORXdbG6q4XRWrvkM92yjy6Wn07Vs3WVtT3X3sqLZsF8QKnvVeVany4VA3UIjurYpYd5u9vvnxgb0KctQpjZDf6mfdw4lR__YKdYzlb-uaVVsFwjSHhcsXwNzOh8HdwRFMNOjvrGKp0WsJrVYLQSNJgUXhswiGytB4xv-zAWpXAEVQZsfgTDAOUTaGP4r6LQ6Hh8Py1G5cPEUKHYZXg0wM3Z6eDkHNWjE5DyOS2Rp8MgZTQLFRcpCRjDgiqlzEsjsFkgMl9IKQmhMmOSSi49acgkt6PRmZacbIC5fJrrTQBZpjTRBFOVUapxIKTBRNJnBkgpQTPZBPj9SBNV9xW34y3GibMvME8sFxLLhaTmQhMcfix5rJpq_EXcsMf-hbA68SbYeWdcUsvdU0Kw61bDPb71y7J9sHg-uOwm3U7vYhss2S9VHpUdMFcWz3oXLKiXcvRU7LnL9QY2_cr1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-D+In-Sensor+Computing+for+Real-Time+DVS+Data+Compression%3A+65-nm+Hardware-Algorithm+Co-Design&rft.jtitle=IEEE+solid-state+circuits+letters&rft.au=Nair%2C+Gopikrishnan+R.&rft.au=Nalla%2C+Pragnya+S.&rft.au=Krishnan%2C+Gokul&rft.au=Anupreetham&rft.date=2024&rft.pub=IEEE&rft.eissn=2573-9603&rft.volume=7&rft.spage=119&rft.epage=122&rft_id=info:doi/10.1109%2FLSSC.2024.3375110&rft.externalDocID=10463618 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2573-9603&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2573-9603&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2573-9603&client=summon |