A Survey on Learnable Evolutionary Algorithms for Scalable Multiobjective Optimization
Recent decades have witnessed great advancements in multiobjective evolutionary algorithms (MOEAs) for multiobjective optimization problems (MOPs). However, these progressively improved MOEAs have not necessarily been equipped with scalable and learnable problem-solving strategies for new and grand...
Uloženo v:
| Vydáno v: | IEEE transactions on evolutionary computation Ročník 27; číslo 6; s. 1941 - 1961 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recent decades have witnessed great advancements in multiobjective evolutionary algorithms (MOEAs) for multiobjective optimization problems (MOPs). However, these progressively improved MOEAs have not necessarily been equipped with scalable and learnable problem-solving strategies for new and grand challenges brought by the scaling-up MOPs with continuously increasing complexity from diverse aspects, mainly, including expensive cost of function evaluations, many objectives, large-scale search space, time-varying environments, and multitask. Under different scenarios, divergent thinking is required in designing new powerful MOEAs for solving them effectively. In this context, research studies on learnable MOEAs with machine learning techniques have received extensive attention in the field of evolutionary computation. This article begins with a general taxonomy of scaling-up MOPs and learnable MOEAs, followed by an analysis of the challenges that these MOPs pose to traditional MOEAs. Then, we synthetically overview recent advances of learnable MOEAs in solving various scaling-up MOPs, focusing primarily on four attractive directions (i.e., learnable evolutionary discriminators for environmental selection, learnable evolutionary generators for reproduction, learnable evolutionary evaluators for function evaluations, and learnable evolutionary transfer modules for sharing or reusing optimization experience). The insight of learnable MOEAs is offered to readers as a reference to the general track of the efforts in this field. |
|---|---|
| AbstractList | Recent decades have witnessed great advancements in multiobjective evolutionary algorithms (MOEAs) for multiobjective optimization problems (MOPs). However, these progressively improved MOEAs have not necessarily been equipped with scalable and learnable problem-solving strategies for new and grand challenges brought by the scaling-up MOPs with continuously increasing complexity from diverse aspects, mainly, including expensive cost of function evaluations, many objectives, large-scale search space, time-varying environments, and multitask. Under different scenarios, divergent thinking is required in designing new powerful MOEAs for solving them effectively. In this context, research studies on learnable MOEAs with machine learning techniques have received extensive attention in the field of evolutionary computation. This article begins with a general taxonomy of scaling-up MOPs and learnable MOEAs, followed by an analysis of the challenges that these MOPs pose to traditional MOEAs. Then, we synthetically overview recent advances of learnable MOEAs in solving various scaling-up MOPs, focusing primarily on four attractive directions (i.e., learnable evolutionary discriminators for environmental selection, learnable evolutionary generators for reproduction, learnable evolutionary evaluators for function evaluations, and learnable evolutionary transfer modules for sharing or reusing optimization experience). The insight of learnable MOEAs is offered to readers as a reference to the general track of the efforts in this field. |
| Author | Liu, Songbai Tan, Kay Chen Li, Jianqiang Lin, Qiuzhen |
| Author_xml | – sequence: 1 givenname: Songbai orcidid: 0000-0003-1048-4486 surname: Liu fullname: Liu, Songbai email: songbai@szu.edu.cn organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 2 givenname: Qiuzhen orcidid: 0000-0003-2415-0401 surname: Lin fullname: Lin, Qiuzhen email: qiuzhlin@szu.edu.cn organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 3 givenname: Jianqiang orcidid: 0000-0002-2208-962X surname: Li fullname: Li, Jianqiang organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 4 givenname: Kay Chen orcidid: 0000-0002-6802-2463 surname: Tan fullname: Tan, Kay Chen email: kctan@polyu.edu.hk organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong, SAR |
| BookMark | eNp9kM9PwjAUgBuDiYD-ASYemnge9rXrth4JwR8JhgNIvC1d6bRkrNh2JPjXuwEH48HT6-H7mve-AerVttYI3QIZARDxsJyuJiNKKBsxygnj5AL1QcQQEUKTXvsmmYjSNHu_QgPvN4RAzEH00WqMF43b6wO2NZ5p6WpZVBpP97ZqgrG1dAc8rj6sM-Fz63FpHV4oWR2h16ZqkWKjVTB7jee7YLbmW3baNbosZeX1zXkO0dvjdDl5jmbzp5fJeBYpKuIQgYS4VJoVRZmuiZaQrJN2d0qSkirOGZWxphRSCrJcF4UAzgWVSipFCYOCsSG6P_27c_ar0T7kG9u0N1Q-p5ngWRYDjVsqPVHKWe-dLnNlwnHP4KSpciB5FzHvIuZdxPwcsTXhj7lzZttG-de5OzlGa_2LJzyJgbEfU9-ADQ |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2025_102092 crossref_primary_10_1007_s43538_025_00459_2 crossref_primary_10_1080_00051144_2025_2541982 crossref_primary_10_1007_s40747_025_01835_7 crossref_primary_10_1109_MCI_2024_3363980 crossref_primary_10_1016_j_swevo_2025_101978 crossref_primary_10_1140_epjqt_s40507_024_00282_6 crossref_primary_10_1109_TFUZZ_2025_3588125 crossref_primary_10_1016_j_neucom_2025_130631 crossref_primary_10_1109_MCI_2024_3487134 crossref_primary_10_1016_j_ins_2025_121973 crossref_primary_10_1016_j_swevo_2024_101734 crossref_primary_10_1088_1361_6501_ad73f3 crossref_primary_10_1016_j_swevo_2025_101951 crossref_primary_10_1145_3682112_3682116 crossref_primary_10_32604_cmes_2024_049044 crossref_primary_10_1016_j_swevo_2025_102087 crossref_primary_10_1016_j_swevo_2025_102020 crossref_primary_10_2174_0129503779282967240315040931 crossref_primary_10_1007_s10462_023_10522_3 crossref_primary_10_1109_TETCI_2025_3537916 crossref_primary_10_1007_s10723_025_09797_3 crossref_primary_10_2118_223956_PA crossref_primary_10_1016_j_asoc_2025_113386 crossref_primary_10_1007_s40747_024_01620_y crossref_primary_10_1145_3760534 crossref_primary_10_1016_j_watres_2025_124474 crossref_primary_10_1016_j_asoc_2025_113755 crossref_primary_10_1016_j_swevo_2024_101601 crossref_primary_10_1016_j_swevo_2024_101821 crossref_primary_10_1109_TIM_2025_3545216 crossref_primary_10_1016_j_ins_2024_121106 crossref_primary_10_1016_j_eswa_2024_125684 |
| Cites_doi | 10.1109/TEVC.2018.2865931 10.1109/MCI.2021.3129961 10.1016/j.neucom.2014.04.068 10.1109/TEVC.2017.2785351 10.1016/j.swevo.2021.100888 10.1016/j.swevo.2019.06.010 10.1109/TEVC.2018.2794319 10.1109/TEVC.2006.882428 10.1109/IJCNN52387.2021.9534083 10.1016/j.apm.2017.10.015 10.1016/j.eswa.2016.10.015 10.1109/TEVC.2016.2611642 10.1016/j.asoc.2020.106120 10.1109/TEVC.2012.2204403 10.1016/j.phycom.2020.101196 10.1109/tcyb.2022.3214825 10.1109/TEVC.2007.894202 10.1016/j.asoc.2012.06.008 10.1109/TCYB.2020.2980888 10.1016/j.swevo.2019.03.015 10.1016/j.swevo.2018.03.011 10.1016/j.swevo.2022.101203 10.1109/TCYB.2020.2989465 10.1109/TEVC.2009.2034647 10.1016/j.ins.2021.08.054 10.1109/TCYB.2019.2960039 10.1109/tcyb.2022.3170344 10.1109/TEVC.2022.3159000 10.1109/TEVC.2021.3115036 10.1109/MCI.2021.3108310 10.1109/TCYB.2018.2869674 10.1109/TCYB.2020.2974100 10.1109/tevc.2022.3168836 10.1109/tevc.2022.3222844 10.1109/TEVC.2022.3152582 10.1016/j.swevo.2022.101074 10.1109/TEVC.2021.3131952 10.1109/TEVC.2017.2672668 10.1109/CEC.2017.7969391 10.1109/TEVC.2021.3103936 10.1109/TEVC.2017.2712906 10.1109/TCYB.2020.3041325 10.1109/CEC.2012.6252865 10.1109/TEVC.2018.2866927 10.1016/j.swevo.2018.03.010 10.1109/TEVC.2018.2869001 10.1109/CEC.2005.1554970 10.1109/TEVC.2019.2926151 10.1109/CIS.2007.136 10.1109/TSMC.2020.3044418 10.1109/tcyb.2021.3109914 10.1109/TCYB.2020.2969025 10.3390/math9243152 10.1109/TEVC.2022.3154416 10.1109/TEVC.2006.880727 10.1109/TETCI.2017.2769104 10.1109/TCYB.2018.2834466 10.1109/TEVC.2022.3145582 10.1109/TEVC.2009.2021467 10.1016/j.neucom.2019.12.048 10.1007/s10462-021-10042-y 10.1109/TEVC.2017.2771451 10.3390/computation10030037 10.1007/978-3-642-10701-6_2 10.1109/CEC.2007.4424730 10.1109/TCYB.2020.2971638 10.1109/TEVC.2018.2874465 10.1109/TEVC.2019.2899030 10.1109/TEVC.2019.2926107 10.1109/4235.797969 10.1007/s11831-021-09562-1 10.1109/TEVC.2016.2574621 10.1145/3474059 10.1162/evco.2009.17.2.135 10.1016/j.eswa.2020.113844 10.1007/s12559-020-09777-7 10.1109/CEC48606.2020.9185522 10.1109/TCYB.2019.2952881 10.1109/TEVC.2021.3060811 10.1109/TEVC.2005.857695 10.1109/tevc.2022.3197427 10.1016/j.knosys.2020.106262 10.1109/CEC.2010.5586465 10.1109/tevc.2022.3197298 10.1016/j.neucom.2014.03.070 10.1109/tevc.2022.3232776 10.1007/s00500-003-0328-5 10.1109/TEVC.2021.3110506 10.1109/TEVC.2017.2758360 10.1016/j.neucom.2022.01.099 10.1007/s00500-016-2126-x 10.1109/TCYB.2020.3017017 10.1109/tevc.2022.3233642 10.1007/978-3-642-41278-3_67 10.1145/3524495 10.1109/TEVC.2019.2940828 10.1109/MCI.2013.2264563 10.1109/ACCESS.2021.3065741 10.1016/j.ins.2020.03.104 10.1109/TCYB.2020.3041212 10.1007/bf00113892 10.1007/978-3-319-10762-2_53 10.1038/s42256-020-00278-8 10.1109/TEVC.2018.2865495 10.1109/TEVC.2020.3023480 10.1109/TEVC.2020.3013290 10.1007/s12293-015-0166-x 10.1016/j.swevo.2021.100985 10.1109/SSCI44817.2019.9002815 10.1109/TEVC.2021.3079985 10.1109/TEVC.2019.2918140 10.1016/j.swevo.2011.08.003 10.1109/ACCESS.2019.2898987 10.1007/s00500-013-1151-2 10.1109/TEVC.2020.2975381 10.1109/TCYB.2019.2906383 10.1109/TEVC.2019.2909744 10.1109/TCYB.2013.2245892 10.1109/TNNLS.2019.2920887 10.1109/TEVC.2021.3073648 10.1109/TCYB.2020.3020630 10.1007/s11633-022-1317-4 10.1109/TEVC.2019.2958075 10.1109/TEVC.2017.2783441 10.1007/978-3-642-38416-5_4 10.1109/TEVC.2016.2622301 10.1109/TEVC.2011.2169968 10.1109/tnnls.2022.3148435 10.1109/tevc.2022.3147568 10.1145/3470971 10.1109/TEVC.2005.851274 10.1109/TCYB.2020.3014126 10.1109/TEVC.2013.2247404 10.1007/978-3-642-19893-9_21 10.1109/TCYB.2020.2979930 10.1109/JAS.2022.105677 10.1016/S0888-613X(02)00090-7 10.1016/j.asoc.2020.106693 10.1109/tevc.2023.3307244 10.1109/4235.996017 10.1109/TCYB.2018.2883914 10.1109/TEVC.2012.2185847 10.1109/CEC.2017.7969332 10.1016/j.asoc.2019.105879 10.1109/tevc.2022.3230822 10.1007/s40747-018-0080-1 10.1109/TEVC.2020.2986348 10.1109/TCYB.2018.2856208 10.1109/tevc.2022.3179256 10.1023/A:1007677805582 10.1145/3467477 10.1109/TCYB.2021.3070434 10.1109/MCI.2020.3039066 10.1162/evco.2007.15.4.493 10.2514/6.2017-0794 10.1016/j.applthermaleng.2018.10.020 10.1109/ISME.2010.274 10.1109/TCYB.2018.2864345 10.1109/CEC.2016.7744206 10.1109/TCYB.2020.3029176 10.1007/s00500-019-04518-x 10.1109/TEVC.2022.3162993 10.1109/TEVC.2017.2697503 10.1109/TCYB.2021.3086501 10.1007/s12293-022-00358-9 10.1007/s11222-014-9477-x 10.1109/TCYB.2020.2981733 10.1109/TEVC.2022.3144180 10.1016/j.asoc.2015.06.020 10.1109/TEVC.2021.3135020 10.1007/3-540-45712-7_29 10.1016/j.neucom.2014.06.076 10.1109/CEC.2010.5586501 10.1109/TEVC.2021.3101697 10.1109/tevc.2021.3099487 10.1109/JAS.2021.1003817 10.1162/evco_a_00300 10.1109/tevc.2022.3199045 10.1109/CEC.2014.6900519 10.1109/TEVC.2019.2902626 10.1109/TCYB.2020.3028070 10.1109/tevc.2022.3182810 10.1007/s40747-021-00362-5 10.1109/tcyb.2022.3164399 10.1109/tevc.2022.3195668 10.1109/MCI.2014.2350953 10.1109/TCYB.2016.2554622 10.1080/0305215X.2011.604316 10.1016/j.swevo.2019.02.010 10.1016/j.ins.2020.08.101 10.1109/tcyb.2021.3128584 10.1109/TCYB.2020.2980815 10.1145/3377929.3389925 10.1109/TEVC.2021.3106168 10.1109/TCSS.2020.2964027 10.1109/TEVC.2021.3056514 10.1145/1143997.1144266 10.1109/TSMC.2021.3131312 10.1109/TEVC.2016.2587749 10.1109/SITIS.2010.22 10.1145/1068009.1068122 10.1109/TCYB.2018.2794503 10.1109/TEVC.2018.2836912 10.1109/TCYB.2016.2638902 10.1007/s00500-017-2965-0 10.1145/1276958.1277079 10.1109/TEVC.2015.2395073 10.1109/CEC.2014.6900641 10.1145/1830483.1830575 10.1016/j.ins.2017.09.051 10.1007/978-3-540-87700-4_78 10.1109/TCYB.2015.2460261 10.1016/j.orl.2011.01.002 10.1109/tevc.2022.3211643 10.1109/tevc.2022.3233364 10.1109/TSMC.2021.3096220 10.1109/tevc.2022.3166482 10.1109/TEVC.2021.3098257 10.1109/TCYB.2016.2602561 10.1109/TEVC.2017.2682274 10.1007/s12559-016-9395-7 10.1145/2792984 10.1016/j.swevo.2022.101225 10.1080/00207543.2018.1437288 10.1016/j.ejor.2021.01.028 10.1109/TEVC.2021.3133874 10.1109/SMC52423.2021.9658650 10.1007/978-3-540-69868-5_10 10.1109/TEVC.2017.2695579 10.1109/TEVC.2009.2033671 10.1109/TEVC.2013.2281535 10.1109/TEVC.2013.2281524 10.1109/MCI.2021.3108311 10.1109/TEVC.2020.2991717 10.1007/s10589-022-00348-0 10.1109/TEVC.2015.2420112 10.1016/j.ins.2019.05.091 10.1109/TEVC.2012.2196800 10.1109/CEC55065.2022.9870259 10.1109/MCI.2014.2326099 10.1109/tcyb.2022.3186591 10.1109/TEVC.2019.2911736 10.1109/4235.728207 10.1109/TEVC.2013.2290086 10.1109/CEC.2017.7969568 10.1109/TEVC.2019.2962747 10.1109/TEVC.2021.3130838 10.1109/tnnls.2021.3113158 10.1109/TEVC.2021.3139437 10.1109/TEVC.2021.3131236 10.1109/TEVC.2022.3155593 10.1145/3071178.3071276 10.1109/TEVC.2021.3098523 10.1109/TEVC.2016.2602348 10.1109/MCI.2011.942584 10.1007/978-3-319-10762-2_67 10.1109/TEVC.2005.846356 10.1109/TCYB.2020.2977661 10.1109/TSMC.2022.3163129 10.1016/j.swevo.2018.04.009 10.1016/j.ins.2019.08.069 10.1109/TSMC.2022.3186546 10.1109/TEVC.2018.2869247 10.1109/TEVC.2016.2519378 10.1109/TEVC.2002.800880 10.1109/TEVC.2016.2521175 10.1109/TEVC.2018.2802784 10.1109/TEVC.2019.2895108 10.1109/TII.2018.2836189 10.1109/tetci.2022.3146882 10.1007/s12559-022-10012-8 10.1109/TCYB.2020.3008697 10.1007/s40747-019-0113-4 10.1109/TCYB.2020.3043509 10.1007/3-540-33019-4_13 10.1109/TCYB.2020.2985081 10.1109/tevc.2022.3155533 10.1145/3377930.3390147 10.1109/TEVC.2016.2600642 10.1109/TSMCC.2008.919172 10.1016/j.ins.2019.01.030 10.1109/TEVC.2019.2925722 10.1016/j.ins.2018.06.073 10.1109/TEVC.2021.3060014 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2023.3250350 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 1961 |
| ExternalDocumentID | 10_1109_TEVC_2023_3250350 10056413 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: U21A20512 funderid: 10.13039/501100001809 – fundername: Research Grants Council of the Hong Kong SAR grantid: PolyU11211521; PolyU15218622 funderid: 10.13039/501100002920 – fundername: Hong Kong Polytechnic University grantid: 1-ZE0C funderid: 10.13039/501100004377 – fundername: Natural Science Foundation of Guangdong Province grantid: 2023A1515011238 funderid: 10.13039/501100003453 – fundername: Shenzhen Science and Technology Program grantid: JCYJ20220531101411027; JCYJ20190808164211203; R2020A045 funderid: 10.13039/501100017610 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-1a14fce3bbf7d0ea16d6350206f2c5532a4e221721afdbb915592acacc2031b33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 65 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001125199200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Nov 30 04:48:18 EST 2025 Tue Nov 18 22:24:22 EST 2025 Sat Nov 29 03:13:50 EST 2025 Wed Aug 27 02:07:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-1a14fce3bbf7d0ea16d6350206f2c5532a4e221721afdbb915592acacc2031b33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1048-4486 0000-0002-6802-2463 0000-0003-2415-0401 0000-0002-2208-962X |
| PQID | 2895884124 |
| PQPubID | 85418 |
| PageCount | 21 |
| ParticipantIDs | ieee_primary_10056413 crossref_citationtrail_10_1109_TEVC_2023_3250350 crossref_primary_10_1109_TEVC_2023_3250350 proquest_journals_2895884124 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref207 ref56 ref208 ref205 ref58 ref206 ref53 ref203 ref52 ref204 ref55 ref201 ref54 ref202 ref209 ref210 ref211 ref51 Deist (ref62) 2021 ref50 ref46 ref218 ref45 ref219 ref48 ref216 ref47 ref217 ref42 ref214 ref41 ref215 ref44 ref212 ref213 ref49 Michalski (ref59) 2000; 38 ref8 ref9 ref4 ref3 ref6 ref5 ref221 ref101 ref222 ref40 ref220 Bartz-Beielstein (ref283) 2020 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 Liu (ref279) 2022 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Jin (ref7) 2006; 16 ref28 ref27 ref29 ref200 Deb (ref100) ref128 ref249 ref129 ref97 ref126 ref247 ref96 ref127 ref248 ref99 ref124 ref245 ref98 ref125 ref246 ref93 ref133 ref254 ref92 ref134 ref255 ref95 ref131 ref252 ref94 ref132 ref253 ref250 ref130 ref251 ref91 ref90 ref89 ref139 ref86 ref137 ref258 ref85 ref138 ref259 ref88 ref135 ref256 ref87 ref136 ref257 Mittal (ref149) 2020 ref82 ref144 ref265 ref81 ref145 ref266 ref84 ref142 ref263 ref83 ref143 ref264 ref140 ref261 ref141 ref262 ref80 ref260 ref79 ref108 ref229 ref78 ref109 ref106 ref227 ref107 ref228 ref75 ref104 ref225 ref74 ref105 ref226 ref77 ref102 ref223 ref76 ref103 ref224 ref71 ref111 ref232 ref70 ref112 ref233 ref73 ref230 ref110 ref231 ref68 ref119 ref67 ref117 ref238 ref69 ref118 ref239 ref64 ref115 ref236 ref63 ref116 ref237 ref66 ref113 ref234 ref65 ref114 ref235 ref60 ref122 ref243 ref123 ref244 ref120 ref241 ref121 ref242 ref240 ref168 ref289 ref169 ref290 ref170 ref291 Chang (ref61) 2021 ref177 ref178 ref175 ref176 ref173 ref174 ref171 ref292 ref172 ref179 ref180 ref181 ref188 ref189 ref186 ref187 ref184 ref185 ref182 ref183 ref148 ref269 ref146 ref267 ref147 ref268 ref155 ref276 ref156 ref277 ref153 ref274 ref154 ref275 ref151 ref272 ref152 ref273 Li (ref43) 2021 ref270 ref150 ref271 ref159 ref157 ref278 ref158 ref280 ref166 ref287 ref167 ref288 ref164 ref285 ref165 ref286 ref162 ref163 ref284 ref160 ref281 ref161 ref282 ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 Jiang (ref72); 3 ref2 ref1 ref191 ref192 ref190 ref199 ref197 ref198 ref195 ref196 ref193 ref194 |
| References_xml | – ident: ref70 doi: 10.1109/TEVC.2018.2865931 – ident: ref268 doi: 10.1109/MCI.2021.3129961 – ident: ref137 doi: 10.1016/j.neucom.2014.04.068 – ident: ref249 doi: 10.1109/TEVC.2017.2785351 – ident: ref269 doi: 10.1016/j.swevo.2021.100888 – ident: ref173 doi: 10.1016/j.swevo.2019.06.010 – ident: ref125 doi: 10.1109/TEVC.2018.2794319 – ident: ref19 doi: 10.1109/TEVC.2006.882428 – ident: ref110 doi: 10.1109/IJCNN52387.2021.9534083 – ident: ref68 doi: 10.1016/j.apm.2017.10.015 – ident: ref58 doi: 10.1016/j.eswa.2016.10.015 – ident: ref82 doi: 10.1109/TEVC.2016.2611642 – ident: ref157 doi: 10.1016/j.asoc.2020.106120 – ident: ref44 doi: 10.1109/TEVC.2012.2204403 – ident: ref177 doi: 10.1016/j.phycom.2020.101196 – ident: ref250 doi: 10.1109/tcyb.2022.3214825 – ident: ref122 doi: 10.1109/TEVC.2007.894202 – ident: ref124 doi: 10.1016/j.asoc.2012.06.008 – ident: ref233 doi: 10.1109/TCYB.2020.2980888 – ident: ref256 doi: 10.1016/j.swevo.2019.03.015 – ident: ref14 doi: 10.1016/j.swevo.2018.03.011 – volume-title: An ANN-assisted repair operator for evolutionary multiobjective optimization year: 2020 ident: ref149 – ident: ref265 doi: 10.1016/j.swevo.2022.101203 – ident: ref236 doi: 10.1109/TCYB.2020.2989465 – ident: ref52 doi: 10.1109/TEVC.2009.2034647 – ident: ref95 doi: 10.1016/j.ins.2021.08.054 – ident: ref48 doi: 10.1109/TCYB.2019.2960039 – ident: ref284 doi: 10.1109/tcyb.2022.3170344 – ident: ref205 doi: 10.1109/TEVC.2022.3159000 – ident: ref207 doi: 10.1109/TEVC.2021.3115036 – start-page: 3352 volume-title: Proc. World Congr. Comput. Intell. (WCCI) ident: ref100 article-title: Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems – ident: ref261 doi: 10.1109/MCI.2021.3108310 – ident: ref291 doi: 10.1109/TCYB.2018.2869674 – ident: ref56 doi: 10.1109/TCYB.2020.2974100 – ident: ref27 doi: 10.1109/tevc.2022.3168836 – ident: ref263 doi: 10.1109/tevc.2022.3222844 – ident: ref202 doi: 10.1109/TEVC.2022.3152582 – ident: ref64 doi: 10.1016/j.swevo.2022.101074 – ident: ref147 doi: 10.1109/TEVC.2021.3131952 – ident: ref99 doi: 10.1109/TEVC.2017.2672668 – ident: ref63 doi: 10.1109/CEC.2017.7969391 – ident: ref189 doi: 10.1109/TEVC.2021.3103936 – ident: ref35 doi: 10.1109/TEVC.2017.2712906 – ident: ref161 doi: 10.1109/TCYB.2020.3041325 – ident: ref197 doi: 10.1109/CEC.2012.6252865 – ident: ref86 doi: 10.1109/TEVC.2018.2866927 – ident: ref239 doi: 10.1016/j.swevo.2018.03.010 – ident: ref36 doi: 10.1109/TEVC.2018.2869001 – ident: ref133 doi: 10.1109/CEC.2005.1554970 – ident: ref106 doi: 10.1109/TEVC.2019.2926151 – ident: ref116 doi: 10.1109/CIS.2007.136 – ident: ref185 doi: 10.1109/TSMC.2020.3044418 – ident: ref162 doi: 10.1109/tcyb.2021.3109914 – ident: ref224 doi: 10.1109/TCYB.2020.2969025 – ident: ref77 doi: 10.3390/math9243152 – ident: ref227 doi: 10.1109/TEVC.2022.3154416 – ident: ref165 doi: 10.1109/TEVC.2006.880727 – ident: ref206 doi: 10.1109/TETCI.2017.2769104 – year: 2021 ident: ref62 article-title: Multi-objective learning to predict pareto fronts using hypervolume maximization publication-title: arXiv:2102.04523 – ident: ref89 doi: 10.1109/TCYB.2018.2834466 – ident: ref277 doi: 10.1109/TEVC.2022.3145582 – ident: ref69 doi: 10.1109/TEVC.2009.2021467 – ident: ref164 doi: 10.1016/j.neucom.2019.12.048 – ident: ref30 doi: 10.1007/s10462-021-10042-y – ident: ref214 doi: 10.1109/TEVC.2017.2771451 – ident: ref91 doi: 10.3390/computation10030037 – ident: ref16 doi: 10.1007/978-3-642-10701-6_2 – ident: ref98 doi: 10.1109/CEC.2007.4424730 – ident: ref81 doi: 10.1109/TCYB.2020.2971638 – ident: ref94 doi: 10.1109/TEVC.2018.2874465 – ident: ref188 doi: 10.1109/TEVC.2019.2899030 – ident: ref212 doi: 10.1109/TEVC.2019.2926107 – ident: ref80 doi: 10.1109/4235.797969 – ident: ref57 doi: 10.1007/s11831-021-09562-1 – ident: ref219 doi: 10.1109/TEVC.2016.2574621 – ident: ref142 doi: 10.1145/3474059 – ident: ref103 doi: 10.1162/evco.2009.17.2.135 – year: 2020 ident: ref283 article-title: Benchmarking in optimization: Best practice and open issues publication-title: arXiv:2007.03488 – ident: ref138 doi: 10.1016/j.eswa.2020.113844 – ident: ref244 doi: 10.1007/s12559-020-09777-7 – ident: ref252 doi: 10.1109/CEC48606.2020.9185522 – ident: ref152 doi: 10.1109/TCYB.2019.2952881 – ident: ref176 doi: 10.1109/TEVC.2021.3060811 – ident: ref12 doi: 10.1109/TEVC.2005.857695 – ident: ref286 doi: 10.1109/tevc.2022.3197427 – ident: ref245 doi: 10.1016/j.knosys.2020.106262 – ident: ref117 doi: 10.1109/CEC.2010.5586465 – ident: ref292 doi: 10.1109/tevc.2022.3197298 – ident: ref119 doi: 10.1016/j.neucom.2014.03.070 – ident: ref266 doi: 10.1109/tevc.2022.3232776 – year: 2022 ident: ref279 article-title: A secure federated data-driven evolutionary multi-objective optimization algorithm publication-title: arXiv:2210.08295 – ident: ref192 doi: 10.1007/s00500-003-0328-5 – ident: ref289 doi: 10.1109/TEVC.2021.3110506 – ident: ref51 doi: 10.1109/TEVC.2017.2758360 – ident: ref6 doi: 10.1016/j.neucom.2022.01.099 – ident: ref171 doi: 10.1007/s00500-016-2126-x – ident: ref230 doi: 10.1109/TCYB.2020.3017017 – year: 2021 ident: ref43 article-title: Decomposition multi-objective evolutionary optimization: From state-of-the-art to future opportunities publication-title: arXiv:2108.09588 – ident: ref262 doi: 10.1109/tevc.2022.3233642 – ident: ref193 doi: 10.1007/978-3-642-41278-3_67 – ident: ref210 doi: 10.1145/3524495 – ident: ref26 doi: 10.1109/TEVC.2019.2940828 – ident: ref267 doi: 10.1109/MCI.2013.2264563 – ident: ref238 doi: 10.1109/ACCESS.2021.3065741 – ident: ref67 doi: 10.1016/j.ins.2020.03.104 – ident: ref155 doi: 10.1109/TCYB.2020.3041212 – ident: ref24 doi: 10.1007/bf00113892 – ident: ref90 doi: 10.1007/978-3-319-10762-2_53 – ident: ref15 doi: 10.1038/s42256-020-00278-8 – ident: ref87 doi: 10.1109/TEVC.2018.2865495 – ident: ref234 doi: 10.1109/TEVC.2020.3023480 – ident: ref42 doi: 10.1109/TEVC.2020.3013290 – ident: ref229 doi: 10.1007/s12293-015-0166-x – ident: ref109 doi: 10.1016/j.swevo.2021.100985 – ident: ref218 doi: 10.1109/SSCI44817.2019.9002815 – ident: ref10 doi: 10.1109/TEVC.2021.3079985 – ident: ref158 doi: 10.1109/TEVC.2019.2918140 – ident: ref113 doi: 10.1016/j.swevo.2011.08.003 – ident: ref92 doi: 10.1109/ACCESS.2019.2898987 – ident: ref123 doi: 10.1007/s00500-013-1151-2 – ident: ref276 doi: 10.1109/TEVC.2020.2975381 – ident: ref139 doi: 10.1109/TCYB.2019.2906383 – ident: ref34 doi: 10.1109/TEVC.2019.2909744 – ident: ref258 doi: 10.1109/TCYB.2013.2245892 – ident: ref241 doi: 10.1109/TNNLS.2019.2920887 – ident: ref184 doi: 10.1109/TEVC.2021.3073648 – ident: ref105 doi: 10.1109/TCYB.2020.3020630 – ident: ref179 doi: 10.1007/s11633-022-1317-4 – ident: ref209 doi: 10.1109/TEVC.2019.2958075 – ident: ref253 doi: 10.1109/TEVC.2017.2783441 – ident: ref208 doi: 10.1007/978-3-642-38416-5_4 – ident: ref183 doi: 10.1109/TEVC.2016.2622301 – ident: ref4 doi: 10.1109/TEVC.2011.2169968 – ident: ref111 doi: 10.1109/tnnls.2022.3148435 – ident: ref225 doi: 10.1109/tevc.2022.3147568 – ident: ref33 doi: 10.1145/3470971 – ident: ref180 doi: 10.1109/TEVC.2005.851274 – ident: ref254 doi: 10.1109/TCYB.2020.3014126 – ident: ref114 doi: 10.1109/TEVC.2013.2247404 – ident: ref129 doi: 10.1007/978-3-642-19893-9_21 – ident: ref160 doi: 10.1109/TCYB.2020.2979930 – ident: ref246 doi: 10.1109/JAS.2022.105677 – ident: ref127 doi: 10.1016/S0888-613X(02)00090-7 – ident: ref174 doi: 10.1016/j.asoc.2020.106693 – ident: ref251 doi: 10.1109/tevc.2023.3307244 – ident: ref41 doi: 10.1109/4235.996017 – ident: ref71 doi: 10.1109/TCYB.2018.2883914 – ident: ref101 doi: 10.1109/TEVC.2012.2185847 – ident: ref211 doi: 10.1109/CEC.2017.7969332 – ident: ref172 doi: 10.1016/j.asoc.2019.105879 – ident: ref278 doi: 10.1109/tevc.2022.3230822 – ident: ref60 doi: 10.1007/s40747-018-0080-1 – ident: ref198 doi: 10.1109/TEVC.2020.2986348 – ident: ref75 doi: 10.1109/TCYB.2018.2856208 – ident: ref272 doi: 10.1109/tevc.2022.3179256 – volume: 38 start-page: 9 year: 2000 ident: ref59 article-title: Learnable evolution model: Evolutionary processes guided by machine learning publication-title: Mach. Learn. doi: 10.1023/A:1007677805582 – ident: ref8 doi: 10.1145/3467477 – ident: ref259 doi: 10.1109/TCYB.2021.3070434 – ident: ref29 doi: 10.1109/MCI.2020.3039066 – ident: ref76 doi: 10.1162/evco.2007.15.4.493 – ident: ref144 doi: 10.2514/6.2017-0794 – ident: ref178 doi: 10.1016/j.applthermaleng.2018.10.020 – ident: ref65 doi: 10.1109/ISME.2010.274 – ident: ref213 doi: 10.1109/TCYB.2018.2864345 – ident: ref204 doi: 10.1109/CEC.2016.7744206 – ident: ref235 doi: 10.1109/TCYB.2020.3029176 – ident: ref153 doi: 10.1007/s00500-019-04518-x – ident: ref290 doi: 10.1109/TEVC.2022.3162993 – ident: ref190 doi: 10.1109/TEVC.2017.2697503 – ident: ref108 doi: 10.1109/TCYB.2021.3086501 – ident: ref134 doi: 10.1007/s12293-022-00358-9 – ident: ref196 doi: 10.1007/s11222-014-9477-x – ident: ref55 doi: 10.1109/TCYB.2020.2981733 – ident: ref255 doi: 10.1109/TEVC.2022.3144180 – ident: ref85 doi: 10.1016/j.asoc.2015.06.020 – ident: ref232 doi: 10.1109/TEVC.2021.3135020 – ident: ref115 doi: 10.1007/3-540-45712-7_29 – ident: ref31 doi: 10.1016/j.neucom.2014.06.076 – ident: ref143 doi: 10.1109/CEC.2010.5586501 – ident: ref222 doi: 10.1109/TEVC.2021.3101697 – ident: ref49 doi: 10.1109/tevc.2021.3099487 – ident: ref79 doi: 10.1109/JAS.2021.1003817 – ident: ref248 doi: 10.1162/evco_a_00300 – ident: ref282 doi: 10.1109/tevc.2022.3199045 – ident: ref150 doi: 10.1109/CEC.2014.6900519 – ident: ref220 doi: 10.1109/TEVC.2019.2902626 – ident: ref288 doi: 10.1109/TCYB.2020.3028070 – ident: ref274 doi: 10.1109/tevc.2022.3182810 – ident: ref186 doi: 10.1007/s40747-021-00362-5 – ident: ref39 doi: 10.1109/tcyb.2022.3164399 – ident: ref270 doi: 10.1109/tevc.2022.3195668 – ident: ref22 doi: 10.1109/MCI.2014.2350953 – ident: ref54 doi: 10.1109/TCYB.2016.2554622 – ident: ref112 doi: 10.1080/0305215X.2011.604316 – ident: ref88 doi: 10.1016/j.swevo.2019.02.010 – ident: ref257 doi: 10.1016/j.ins.2020.08.101 – ident: ref215 doi: 10.1109/tcyb.2021.3128584 – ident: ref11 doi: 10.1109/TCYB.2020.2980815 – ident: ref148 doi: 10.1145/3377929.3389925 – ident: ref169 doi: 10.1109/TEVC.2021.3106168 – year: 2021 ident: ref61 article-title: Self-evolutionary optimization for Pareto front learning publication-title: arXiv:2110.03461 – ident: ref163 doi: 10.1109/TCSS.2020.2964027 – ident: ref231 doi: 10.1109/TEVC.2021.3056514 – ident: ref141 doi: 10.1145/1143997.1144266 – ident: ref140 doi: 10.1109/TSMC.2021.3131312 – ident: ref46 doi: 10.1109/TEVC.2016.2587749 – ident: ref175 doi: 10.1109/SITIS.2010.22 – ident: ref121 doi: 10.1145/1068009.1068122 – ident: ref187 doi: 10.1109/TCYB.2018.2794503 – ident: ref50 doi: 10.1109/TEVC.2018.2836912 – ident: ref96 doi: 10.1109/TCYB.2016.2638902 – ident: ref199 doi: 10.1007/s00500-017-2965-0 – ident: ref120 doi: 10.1145/1276958.1277079 – ident: ref131 doi: 10.1109/TEVC.2015.2395073 – ident: ref200 doi: 10.1109/CEC.2014.6900641 – ident: ref93 doi: 10.1145/1830483.1830575 – ident: ref97 doi: 10.1016/j.ins.2017.09.051 – ident: ref195 doi: 10.1007/978-3-540-87700-4_78 – ident: ref287 doi: 10.1109/TCYB.2015.2460261 – ident: ref118 doi: 10.1016/j.orl.2011.01.002 – ident: ref275 doi: 10.1109/tevc.2022.3211643 – ident: ref285 doi: 10.1109/tevc.2022.3233364 – ident: ref240 doi: 10.1109/TSMC.2021.3096220 – ident: ref40 doi: 10.1109/tevc.2022.3166482 – ident: ref201 doi: 10.1109/TEVC.2021.3098257 – ident: ref260 doi: 10.1109/TCYB.2016.2602561 – ident: ref228 doi: 10.1109/TEVC.2017.2682274 – ident: ref37 doi: 10.1007/s12559-016-9395-7 – ident: ref17 doi: 10.1145/2792984 – ident: ref28 doi: 10.1016/j.swevo.2022.101225 – ident: ref25 doi: 10.1080/00207543.2018.1437288 – ident: ref216 doi: 10.1016/j.ejor.2021.01.028 – ident: ref221 doi: 10.1109/TEVC.2021.3133874 – ident: ref130 doi: 10.1109/SMC52423.2021.9658650 – ident: ref167 doi: 10.1007/978-3-540-69868-5_10 – ident: ref104 doi: 10.1109/TEVC.2017.2695579 – ident: ref182 doi: 10.1109/TEVC.2009.2033671 – ident: ref45 doi: 10.1109/TEVC.2013.2281535 – ident: ref128 doi: 10.1109/TEVC.2013.2281524 – ident: ref217 doi: 10.1109/MCI.2021.3108311 – ident: ref280 doi: 10.1109/TEVC.2020.2991717 – ident: ref151 doi: 10.1007/s10589-022-00348-0 – ident: ref83 doi: 10.1109/TEVC.2015.2420112 – ident: ref132 doi: 10.1016/j.ins.2019.05.091 – ident: ref5 doi: 10.1109/TEVC.2012.2196800 – ident: ref159 doi: 10.1109/CEC55065.2022.9870259 – ident: ref21 doi: 10.1109/MCI.2014.2326099 – ident: ref271 doi: 10.1109/tcyb.2022.3186591 – ident: ref281 doi: 10.1109/TEVC.2019.2911736 – ident: ref13 doi: 10.1109/4235.728207 – ident: ref9 doi: 10.1109/TEVC.2013.2290086 – ident: ref145 doi: 10.1109/CEC.2017.7969568 – ident: ref223 doi: 10.1109/TEVC.2019.2962747 – ident: ref18 doi: 10.1109/TEVC.2021.3130838 – ident: ref136 doi: 10.1109/tnnls.2021.3113158 – ident: ref20 doi: 10.1109/TEVC.2021.3139437 – ident: ref243 doi: 10.1109/TEVC.2021.3131236 – ident: ref146 doi: 10.1109/TEVC.2022.3155593 – ident: ref194 doi: 10.1145/3071178.3071276 – ident: ref226 doi: 10.1109/TEVC.2021.3098523 – ident: ref166 doi: 10.1109/TEVC.2016.2602348 – ident: ref23 doi: 10.1109/MCI.2011.942584 – ident: ref66 doi: 10.1007/978-3-319-10762-2_67 – ident: ref1 doi: 10.1109/TEVC.2005.846356 – ident: ref107 doi: 10.1109/TCYB.2020.2977661 – ident: ref273 doi: 10.1109/TSMC.2022.3163129 – ident: ref126 doi: 10.1016/j.swevo.2018.04.009 – ident: ref170 doi: 10.1016/j.ins.2019.08.069 – ident: ref78 doi: 10.1109/TSMC.2022.3186546 – volume: 3 start-page: 1260 volume-title: Proc. Int. Conf. Nat. Comput. ident: ref72 article-title: Multiobjective optimization by decomposition with Pareto-adaptive weight vectors – ident: ref191 doi: 10.1109/TEVC.2018.2869247 – ident: ref84 doi: 10.1109/TEVC.2016.2519378 – ident: ref2 doi: 10.1109/TEVC.2002.800880 – ident: ref73 doi: 10.1109/TEVC.2016.2521175 – ident: ref181 doi: 10.1109/TEVC.2018.2802784 – ident: ref47 doi: 10.1109/TEVC.2019.2895108 – ident: ref156 doi: 10.1109/TII.2018.2836189 – ident: ref168 doi: 10.1109/tetci.2022.3146882 – ident: ref264 doi: 10.1007/s12559-022-10012-8 – ident: ref74 doi: 10.1109/TCYB.2020.3008697 – ident: ref3 doi: 10.1007/s40747-019-0113-4 – ident: ref237 doi: 10.1109/TCYB.2020.3043509 – volume: 16 volume-title: Multi-Objective Machine Learning year: 2006 ident: ref7 doi: 10.1007/3-540-33019-4_13 – ident: ref135 doi: 10.1109/TCYB.2020.2985081 – ident: ref32 doi: 10.1109/tevc.2022.3155533 – ident: ref247 doi: 10.1145/3377930.3390147 – ident: ref154 doi: 10.1109/TEVC.2016.2600642 – ident: ref53 doi: 10.1109/TSMCC.2008.919172 – ident: ref102 doi: 10.1016/j.ins.2019.01.030 – ident: ref242 doi: 10.1109/TEVC.2019.2925722 – ident: ref203 doi: 10.1016/j.ins.2018.06.073 – ident: ref38 doi: 10.1109/TEVC.2021.3060014 |
| SSID | ssj0014519 |
| Score | 2.6496906 |
| Snippet | Recent decades have witnessed great advancements in multiobjective evolutionary algorithms (MOEAs) for multiobjective optimization problems (MOPs). However,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1941 |
| SubjectTerms | Evolution (biology) Evolutionary algorithms Evolutionary computation Generators Genetic algorithms Learnable evolutionary algorithms Machine learning machine learning (ML) Multiple objective analysis Optimization scalable multiobjective optimization Scaling Search problems Sociology Statistics Taxonomy |
| Title | A Survey on Learnable Evolutionary Algorithms for Scalable Multiobjective Optimization |
| URI | https://ieeexplore.ieee.org/document/10056413 https://www.proquest.com/docview/2895884124 |
| Volume | 27 |
| WOSCitedRecordID | wos001125199200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_o8DAPTufE6ZQcPAmd_ciW9jjGxINMwTl2K0ma-sHWSvcB--_NS7MxEAVvPSRp6S9575fkvd8DuFFMc2TUbGUdLvQGhSon5C4CkrBUYTyAOboYP7LhMJxMomebrG5yYZRSJvhMtfHR3OUnuVziUZle4dpdU6xRu88YK5O1tlcGqJNSRtNHmjKGE3uFqV92NxqM-22sE94OtMcPMMd-xwmZqio_TLHxL_e1f37ZMRxZIkl6JfInsKeyOtQ2RRqIXbN1ONxRHKxDFcllqc18CuMeeVkWK7UmeUaM0CrmUZHByk5HXqxJb_qWFx-L99mcaHqrh-VT08gk7ubis7SX5ElbnplN6WzA6_1g1H9wbJ0FR_oRXTge92gqVSBEyhJXca-baBqieWQ39WWnE_icKh8LWXk8TYQwivI-l1xKX5sEEQRnUMnyTJ0DCT03lTRggoUpVTKJPOHyrqckDYXry7AJ7ubHx9KKkGMtjGlsNiNuFCNWMWIVW6yacLvt8lUqcPzVuIHg7DQscWlCawNvbBfpPNZ7TUzT1Qzn4pdul1DF0cvwlRZUFsVSXcGBXGmkimsz_74BsKLXXA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4YNBEPoogRRe3Bkwm4j8LuHgmBYEQ0EQm3Tdvt-giwZnkk_Hs73UJIjCbe9tBuN_u1M1_b-WYAbqSnODLmbPXqjKsNCpVVn1kISOTFEuMB9NHFsOf1-_5oFDwbsbrWwkgpdfCZrOGjvsuPErHAozK1wpW7plijdrdOqWNncq3NpQFmSsni6QNFGv2RucRUw90N2sNWDSuF11zl811U2W-5IV1X5Ycx1h6mU_jntx3BoaGSpJlhfww7clqEwrpMAzGrtggHWzkHi5BHepllZz6BYZO8LNKlXJFkSnSqVVRSkfbSTEiWrkhz_JakH_P3yYwogqtey8a6kZbuJvwzs5jkSdmeiRF1luC10x60ulVTaaEqnIDOqzazaSyky3nsRZZkdiNSREQxyUbsiHrddRiVDpayslkcca5zyjtMMCEcZRS4655CbppM5RkQ37ZiQV2Pe35MpYgCm1usYUtBfW45wi-Dtf7xoTBpyLEaxjjU2xErCBGrELEKDVZluN10-cpycPzVuITgbDXMcClDZQ1vaJbpLFS7TRTqKo5z_ku3a9jvDh57Ye--_3ABeRwpC2apQG6eLuQl7ImlQi290nPxGwtU2qM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Learnable+Evolutionary+Algorithms+for+Scalable+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Liu%2C+Songbai&rft.au=Lin%2C+Qiuzhen&rft.au=Li%2C+Jianqiang&rft.au=Kay+Chen+Tan&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=27&rft.issue=6&rft.spage=1941&rft_id=info:doi/10.1109%2FTEVC.2023.3250350&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |