A Survey on Learnable Evolutionary Algorithms for Scalable Multiobjective Optimization

Recent decades have witnessed great advancements in multiobjective evolutionary algorithms (MOEAs) for multiobjective optimization problems (MOPs). However, these progressively improved MOEAs have not necessarily been equipped with scalable and learnable problem-solving strategies for new and grand...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on evolutionary computation Ročník 27; číslo 6; s. 1941 - 1961
Hlavní autori: Liu, Songbai, Lin, Qiuzhen, Li, Jianqiang, Tan, Kay Chen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1089-778X, 1941-0026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recent decades have witnessed great advancements in multiobjective evolutionary algorithms (MOEAs) for multiobjective optimization problems (MOPs). However, these progressively improved MOEAs have not necessarily been equipped with scalable and learnable problem-solving strategies for new and grand challenges brought by the scaling-up MOPs with continuously increasing complexity from diverse aspects, mainly, including expensive cost of function evaluations, many objectives, large-scale search space, time-varying environments, and multitask. Under different scenarios, divergent thinking is required in designing new powerful MOEAs for solving them effectively. In this context, research studies on learnable MOEAs with machine learning techniques have received extensive attention in the field of evolutionary computation. This article begins with a general taxonomy of scaling-up MOPs and learnable MOEAs, followed by an analysis of the challenges that these MOPs pose to traditional MOEAs. Then, we synthetically overview recent advances of learnable MOEAs in solving various scaling-up MOPs, focusing primarily on four attractive directions (i.e., learnable evolutionary discriminators for environmental selection, learnable evolutionary generators for reproduction, learnable evolutionary evaluators for function evaluations, and learnable evolutionary transfer modules for sharing or reusing optimization experience). The insight of learnable MOEAs is offered to readers as a reference to the general track of the efforts in this field.
AbstractList Recent decades have witnessed great advancements in multiobjective evolutionary algorithms (MOEAs) for multiobjective optimization problems (MOPs). However, these progressively improved MOEAs have not necessarily been equipped with scalable and learnable problem-solving strategies for new and grand challenges brought by the scaling-up MOPs with continuously increasing complexity from diverse aspects, mainly, including expensive cost of function evaluations, many objectives, large-scale search space, time-varying environments, and multitask. Under different scenarios, divergent thinking is required in designing new powerful MOEAs for solving them effectively. In this context, research studies on learnable MOEAs with machine learning techniques have received extensive attention in the field of evolutionary computation. This article begins with a general taxonomy of scaling-up MOPs and learnable MOEAs, followed by an analysis of the challenges that these MOPs pose to traditional MOEAs. Then, we synthetically overview recent advances of learnable MOEAs in solving various scaling-up MOPs, focusing primarily on four attractive directions (i.e., learnable evolutionary discriminators for environmental selection, learnable evolutionary generators for reproduction, learnable evolutionary evaluators for function evaluations, and learnable evolutionary transfer modules for sharing or reusing optimization experience). The insight of learnable MOEAs is offered to readers as a reference to the general track of the efforts in this field.
Author Liu, Songbai
Tan, Kay Chen
Li, Jianqiang
Lin, Qiuzhen
Author_xml – sequence: 1
  givenname: Songbai
  orcidid: 0000-0003-1048-4486
  surname: Liu
  fullname: Liu, Songbai
  email: songbai@szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Qiuzhen
  orcidid: 0000-0003-2415-0401
  surname: Lin
  fullname: Lin, Qiuzhen
  email: qiuzhlin@szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 3
  givenname: Jianqiang
  orcidid: 0000-0002-2208-962X
  surname: Li
  fullname: Li, Jianqiang
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 4
  givenname: Kay Chen
  orcidid: 0000-0002-6802-2463
  surname: Tan
  fullname: Tan, Kay Chen
  email: kctan@polyu.edu.hk
  organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong, SAR
BookMark eNp9kM9PwjAUgBuDiYD-ASYemnge9rXrth4JwR8JhgNIvC1d6bRkrNh2JPjXuwEH48HT6-H7mve-AerVttYI3QIZARDxsJyuJiNKKBsxygnj5AL1QcQQEUKTXvsmmYjSNHu_QgPvN4RAzEH00WqMF43b6wO2NZ5p6WpZVBpP97ZqgrG1dAc8rj6sM-Fz63FpHV4oWR2h16ZqkWKjVTB7jee7YLbmW3baNbosZeX1zXkO0dvjdDl5jmbzp5fJeBYpKuIQgYS4VJoVRZmuiZaQrJN2d0qSkirOGZWxphRSCrJcF4UAzgWVSipFCYOCsSG6P_27c_ar0T7kG9u0N1Q-p5ngWRYDjVsqPVHKWe-dLnNlwnHP4KSpciB5FzHvIuZdxPwcsTXhj7lzZttG-de5OzlGa_2LJzyJgbEfU9-ADQ
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_swevo_2025_102092
crossref_primary_10_1007_s43538_025_00459_2
crossref_primary_10_1080_00051144_2025_2541982
crossref_primary_10_1007_s40747_025_01835_7
crossref_primary_10_1109_MCI_2024_3363980
crossref_primary_10_1016_j_swevo_2025_101978
crossref_primary_10_1140_epjqt_s40507_024_00282_6
crossref_primary_10_1109_TFUZZ_2025_3588125
crossref_primary_10_1016_j_neucom_2025_130631
crossref_primary_10_1109_MCI_2024_3487134
crossref_primary_10_1016_j_ins_2025_121973
crossref_primary_10_1016_j_swevo_2024_101734
crossref_primary_10_1088_1361_6501_ad73f3
crossref_primary_10_1016_j_swevo_2025_101951
crossref_primary_10_1145_3682112_3682116
crossref_primary_10_32604_cmes_2024_049044
crossref_primary_10_1016_j_swevo_2025_102087
crossref_primary_10_1016_j_swevo_2025_102020
crossref_primary_10_2174_0129503779282967240315040931
crossref_primary_10_1007_s10462_023_10522_3
crossref_primary_10_1109_TETCI_2025_3537916
crossref_primary_10_1007_s10723_025_09797_3
crossref_primary_10_2118_223956_PA
crossref_primary_10_1016_j_asoc_2025_113386
crossref_primary_10_1007_s40747_024_01620_y
crossref_primary_10_1145_3760534
crossref_primary_10_1016_j_watres_2025_124474
crossref_primary_10_1016_j_asoc_2025_113755
crossref_primary_10_1016_j_swevo_2024_101601
crossref_primary_10_1016_j_swevo_2024_101821
crossref_primary_10_1109_TIM_2025_3545216
crossref_primary_10_1016_j_ins_2024_121106
crossref_primary_10_1016_j_eswa_2024_125684
Cites_doi 10.1109/TEVC.2018.2865931
10.1109/MCI.2021.3129961
10.1016/j.neucom.2014.04.068
10.1109/TEVC.2017.2785351
10.1016/j.swevo.2021.100888
10.1016/j.swevo.2019.06.010
10.1109/TEVC.2018.2794319
10.1109/TEVC.2006.882428
10.1109/IJCNN52387.2021.9534083
10.1016/j.apm.2017.10.015
10.1016/j.eswa.2016.10.015
10.1109/TEVC.2016.2611642
10.1016/j.asoc.2020.106120
10.1109/TEVC.2012.2204403
10.1016/j.phycom.2020.101196
10.1109/tcyb.2022.3214825
10.1109/TEVC.2007.894202
10.1016/j.asoc.2012.06.008
10.1109/TCYB.2020.2980888
10.1016/j.swevo.2019.03.015
10.1016/j.swevo.2018.03.011
10.1016/j.swevo.2022.101203
10.1109/TCYB.2020.2989465
10.1109/TEVC.2009.2034647
10.1016/j.ins.2021.08.054
10.1109/TCYB.2019.2960039
10.1109/tcyb.2022.3170344
10.1109/TEVC.2022.3159000
10.1109/TEVC.2021.3115036
10.1109/MCI.2021.3108310
10.1109/TCYB.2018.2869674
10.1109/TCYB.2020.2974100
10.1109/tevc.2022.3168836
10.1109/tevc.2022.3222844
10.1109/TEVC.2022.3152582
10.1016/j.swevo.2022.101074
10.1109/TEVC.2021.3131952
10.1109/TEVC.2017.2672668
10.1109/CEC.2017.7969391
10.1109/TEVC.2021.3103936
10.1109/TEVC.2017.2712906
10.1109/TCYB.2020.3041325
10.1109/CEC.2012.6252865
10.1109/TEVC.2018.2866927
10.1016/j.swevo.2018.03.010
10.1109/TEVC.2018.2869001
10.1109/CEC.2005.1554970
10.1109/TEVC.2019.2926151
10.1109/CIS.2007.136
10.1109/TSMC.2020.3044418
10.1109/tcyb.2021.3109914
10.1109/TCYB.2020.2969025
10.3390/math9243152
10.1109/TEVC.2022.3154416
10.1109/TEVC.2006.880727
10.1109/TETCI.2017.2769104
10.1109/TCYB.2018.2834466
10.1109/TEVC.2022.3145582
10.1109/TEVC.2009.2021467
10.1016/j.neucom.2019.12.048
10.1007/s10462-021-10042-y
10.1109/TEVC.2017.2771451
10.3390/computation10030037
10.1007/978-3-642-10701-6_2
10.1109/CEC.2007.4424730
10.1109/TCYB.2020.2971638
10.1109/TEVC.2018.2874465
10.1109/TEVC.2019.2899030
10.1109/TEVC.2019.2926107
10.1109/4235.797969
10.1007/s11831-021-09562-1
10.1109/TEVC.2016.2574621
10.1145/3474059
10.1162/evco.2009.17.2.135
10.1016/j.eswa.2020.113844
10.1007/s12559-020-09777-7
10.1109/CEC48606.2020.9185522
10.1109/TCYB.2019.2952881
10.1109/TEVC.2021.3060811
10.1109/TEVC.2005.857695
10.1109/tevc.2022.3197427
10.1016/j.knosys.2020.106262
10.1109/CEC.2010.5586465
10.1109/tevc.2022.3197298
10.1016/j.neucom.2014.03.070
10.1109/tevc.2022.3232776
10.1007/s00500-003-0328-5
10.1109/TEVC.2021.3110506
10.1109/TEVC.2017.2758360
10.1016/j.neucom.2022.01.099
10.1007/s00500-016-2126-x
10.1109/TCYB.2020.3017017
10.1109/tevc.2022.3233642
10.1007/978-3-642-41278-3_67
10.1145/3524495
10.1109/TEVC.2019.2940828
10.1109/MCI.2013.2264563
10.1109/ACCESS.2021.3065741
10.1016/j.ins.2020.03.104
10.1109/TCYB.2020.3041212
10.1007/bf00113892
10.1007/978-3-319-10762-2_53
10.1038/s42256-020-00278-8
10.1109/TEVC.2018.2865495
10.1109/TEVC.2020.3023480
10.1109/TEVC.2020.3013290
10.1007/s12293-015-0166-x
10.1016/j.swevo.2021.100985
10.1109/SSCI44817.2019.9002815
10.1109/TEVC.2021.3079985
10.1109/TEVC.2019.2918140
10.1016/j.swevo.2011.08.003
10.1109/ACCESS.2019.2898987
10.1007/s00500-013-1151-2
10.1109/TEVC.2020.2975381
10.1109/TCYB.2019.2906383
10.1109/TEVC.2019.2909744
10.1109/TCYB.2013.2245892
10.1109/TNNLS.2019.2920887
10.1109/TEVC.2021.3073648
10.1109/TCYB.2020.3020630
10.1007/s11633-022-1317-4
10.1109/TEVC.2019.2958075
10.1109/TEVC.2017.2783441
10.1007/978-3-642-38416-5_4
10.1109/TEVC.2016.2622301
10.1109/TEVC.2011.2169968
10.1109/tnnls.2022.3148435
10.1109/tevc.2022.3147568
10.1145/3470971
10.1109/TEVC.2005.851274
10.1109/TCYB.2020.3014126
10.1109/TEVC.2013.2247404
10.1007/978-3-642-19893-9_21
10.1109/TCYB.2020.2979930
10.1109/JAS.2022.105677
10.1016/S0888-613X(02)00090-7
10.1016/j.asoc.2020.106693
10.1109/tevc.2023.3307244
10.1109/4235.996017
10.1109/TCYB.2018.2883914
10.1109/TEVC.2012.2185847
10.1109/CEC.2017.7969332
10.1016/j.asoc.2019.105879
10.1109/tevc.2022.3230822
10.1007/s40747-018-0080-1
10.1109/TEVC.2020.2986348
10.1109/TCYB.2018.2856208
10.1109/tevc.2022.3179256
10.1023/A:1007677805582
10.1145/3467477
10.1109/TCYB.2021.3070434
10.1109/MCI.2020.3039066
10.1162/evco.2007.15.4.493
10.2514/6.2017-0794
10.1016/j.applthermaleng.2018.10.020
10.1109/ISME.2010.274
10.1109/TCYB.2018.2864345
10.1109/CEC.2016.7744206
10.1109/TCYB.2020.3029176
10.1007/s00500-019-04518-x
10.1109/TEVC.2022.3162993
10.1109/TEVC.2017.2697503
10.1109/TCYB.2021.3086501
10.1007/s12293-022-00358-9
10.1007/s11222-014-9477-x
10.1109/TCYB.2020.2981733
10.1109/TEVC.2022.3144180
10.1016/j.asoc.2015.06.020
10.1109/TEVC.2021.3135020
10.1007/3-540-45712-7_29
10.1016/j.neucom.2014.06.076
10.1109/CEC.2010.5586501
10.1109/TEVC.2021.3101697
10.1109/tevc.2021.3099487
10.1109/JAS.2021.1003817
10.1162/evco_a_00300
10.1109/tevc.2022.3199045
10.1109/CEC.2014.6900519
10.1109/TEVC.2019.2902626
10.1109/TCYB.2020.3028070
10.1109/tevc.2022.3182810
10.1007/s40747-021-00362-5
10.1109/tcyb.2022.3164399
10.1109/tevc.2022.3195668
10.1109/MCI.2014.2350953
10.1109/TCYB.2016.2554622
10.1080/0305215X.2011.604316
10.1016/j.swevo.2019.02.010
10.1016/j.ins.2020.08.101
10.1109/tcyb.2021.3128584
10.1109/TCYB.2020.2980815
10.1145/3377929.3389925
10.1109/TEVC.2021.3106168
10.1109/TCSS.2020.2964027
10.1109/TEVC.2021.3056514
10.1145/1143997.1144266
10.1109/TSMC.2021.3131312
10.1109/TEVC.2016.2587749
10.1109/SITIS.2010.22
10.1145/1068009.1068122
10.1109/TCYB.2018.2794503
10.1109/TEVC.2018.2836912
10.1109/TCYB.2016.2638902
10.1007/s00500-017-2965-0
10.1145/1276958.1277079
10.1109/TEVC.2015.2395073
10.1109/CEC.2014.6900641
10.1145/1830483.1830575
10.1016/j.ins.2017.09.051
10.1007/978-3-540-87700-4_78
10.1109/TCYB.2015.2460261
10.1016/j.orl.2011.01.002
10.1109/tevc.2022.3211643
10.1109/tevc.2022.3233364
10.1109/TSMC.2021.3096220
10.1109/tevc.2022.3166482
10.1109/TEVC.2021.3098257
10.1109/TCYB.2016.2602561
10.1109/TEVC.2017.2682274
10.1007/s12559-016-9395-7
10.1145/2792984
10.1016/j.swevo.2022.101225
10.1080/00207543.2018.1437288
10.1016/j.ejor.2021.01.028
10.1109/TEVC.2021.3133874
10.1109/SMC52423.2021.9658650
10.1007/978-3-540-69868-5_10
10.1109/TEVC.2017.2695579
10.1109/TEVC.2009.2033671
10.1109/TEVC.2013.2281535
10.1109/TEVC.2013.2281524
10.1109/MCI.2021.3108311
10.1109/TEVC.2020.2991717
10.1007/s10589-022-00348-0
10.1109/TEVC.2015.2420112
10.1016/j.ins.2019.05.091
10.1109/TEVC.2012.2196800
10.1109/CEC55065.2022.9870259
10.1109/MCI.2014.2326099
10.1109/tcyb.2022.3186591
10.1109/TEVC.2019.2911736
10.1109/4235.728207
10.1109/TEVC.2013.2290086
10.1109/CEC.2017.7969568
10.1109/TEVC.2019.2962747
10.1109/TEVC.2021.3130838
10.1109/tnnls.2021.3113158
10.1109/TEVC.2021.3139437
10.1109/TEVC.2021.3131236
10.1109/TEVC.2022.3155593
10.1145/3071178.3071276
10.1109/TEVC.2021.3098523
10.1109/TEVC.2016.2602348
10.1109/MCI.2011.942584
10.1007/978-3-319-10762-2_67
10.1109/TEVC.2005.846356
10.1109/TCYB.2020.2977661
10.1109/TSMC.2022.3163129
10.1016/j.swevo.2018.04.009
10.1016/j.ins.2019.08.069
10.1109/TSMC.2022.3186546
10.1109/TEVC.2018.2869247
10.1109/TEVC.2016.2519378
10.1109/TEVC.2002.800880
10.1109/TEVC.2016.2521175
10.1109/TEVC.2018.2802784
10.1109/TEVC.2019.2895108
10.1109/TII.2018.2836189
10.1109/tetci.2022.3146882
10.1007/s12559-022-10012-8
10.1109/TCYB.2020.3008697
10.1007/s40747-019-0113-4
10.1109/TCYB.2020.3043509
10.1007/3-540-33019-4_13
10.1109/TCYB.2020.2985081
10.1109/tevc.2022.3155533
10.1145/3377930.3390147
10.1109/TEVC.2016.2600642
10.1109/TSMCC.2008.919172
10.1016/j.ins.2019.01.030
10.1109/TEVC.2019.2925722
10.1016/j.ins.2018.06.073
10.1109/TEVC.2021.3060014
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2023.3250350
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 1961
ExternalDocumentID 10_1109_TEVC_2023_3250350
10056413
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: U21A20512
  funderid: 10.13039/501100001809
– fundername: Research Grants Council of the Hong Kong SAR
  grantid: PolyU11211521; PolyU15218622
  funderid: 10.13039/501100002920
– fundername: Hong Kong Polytechnic University
  grantid: 1-ZE0C
  funderid: 10.13039/501100004377
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2023A1515011238
  funderid: 10.13039/501100003453
– fundername: Shenzhen Science and Technology Program
  grantid: JCYJ20220531101411027; JCYJ20190808164211203; R2020A045
  funderid: 10.13039/501100017610
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-1a14fce3bbf7d0ea16d6350206f2c5532a4e221721afdbb915592acacc2031b33
IEDL.DBID RIE
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001125199200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Nov 30 04:48:18 EST 2025
Tue Nov 18 22:24:22 EST 2025
Sat Nov 29 03:13:50 EST 2025
Wed Aug 27 02:07:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-1a14fce3bbf7d0ea16d6350206f2c5532a4e221721afdbb915592acacc2031b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1048-4486
0000-0002-6802-2463
0000-0003-2415-0401
0000-0002-2208-962X
PQID 2895884124
PQPubID 85418
PageCount 21
ParticipantIDs ieee_primary_10056413
crossref_citationtrail_10_1109_TEVC_2023_3250350
crossref_primary_10_1109_TEVC_2023_3250350
proquest_journals_2895884124
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref207
ref56
ref208
ref205
ref58
ref206
ref53
ref203
ref52
ref204
ref55
ref201
ref54
ref202
ref209
ref210
ref211
ref51
Deist (ref62) 2021
ref50
ref46
ref218
ref45
ref219
ref48
ref216
ref47
ref217
ref42
ref214
ref41
ref215
ref44
ref212
ref213
ref49
Michalski (ref59) 2000; 38
ref8
ref9
ref4
ref3
ref6
ref5
ref221
ref101
ref222
ref40
ref220
Bartz-Beielstein (ref283) 2020
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
Liu (ref279) 2022
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Jin (ref7) 2006; 16
ref28
ref27
ref29
ref200
Deb (ref100)
ref128
ref249
ref129
ref97
ref126
ref247
ref96
ref127
ref248
ref99
ref124
ref245
ref98
ref125
ref246
ref93
ref133
ref254
ref92
ref134
ref255
ref95
ref131
ref252
ref94
ref132
ref253
ref250
ref130
ref251
ref91
ref90
ref89
ref139
ref86
ref137
ref258
ref85
ref138
ref259
ref88
ref135
ref256
ref87
ref136
ref257
Mittal (ref149) 2020
ref82
ref144
ref265
ref81
ref145
ref266
ref84
ref142
ref263
ref83
ref143
ref264
ref140
ref261
ref141
ref262
ref80
ref260
ref79
ref108
ref229
ref78
ref109
ref106
ref227
ref107
ref228
ref75
ref104
ref225
ref74
ref105
ref226
ref77
ref102
ref223
ref76
ref103
ref224
ref71
ref111
ref232
ref70
ref112
ref233
ref73
ref230
ref110
ref231
ref68
ref119
ref67
ref117
ref238
ref69
ref118
ref239
ref64
ref115
ref236
ref63
ref116
ref237
ref66
ref113
ref234
ref65
ref114
ref235
ref60
ref122
ref243
ref123
ref244
ref120
ref241
ref121
ref242
ref240
ref168
ref289
ref169
ref290
ref170
ref291
Chang (ref61) 2021
ref177
ref178
ref175
ref176
ref173
ref174
ref171
ref292
ref172
ref179
ref180
ref181
ref188
ref189
ref186
ref187
ref184
ref185
ref182
ref183
ref148
ref269
ref146
ref267
ref147
ref268
ref155
ref276
ref156
ref277
ref153
ref274
ref154
ref275
ref151
ref272
ref152
ref273
Li (ref43) 2021
ref270
ref150
ref271
ref159
ref157
ref278
ref158
ref280
ref166
ref287
ref167
ref288
ref164
ref285
ref165
ref286
ref162
ref163
ref284
ref160
ref281
ref161
ref282
ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
Jiang (ref72); 3
ref2
ref1
ref191
ref192
ref190
ref199
ref197
ref198
ref195
ref196
ref193
ref194
References_xml – ident: ref70
  doi: 10.1109/TEVC.2018.2865931
– ident: ref268
  doi: 10.1109/MCI.2021.3129961
– ident: ref137
  doi: 10.1016/j.neucom.2014.04.068
– ident: ref249
  doi: 10.1109/TEVC.2017.2785351
– ident: ref269
  doi: 10.1016/j.swevo.2021.100888
– ident: ref173
  doi: 10.1016/j.swevo.2019.06.010
– ident: ref125
  doi: 10.1109/TEVC.2018.2794319
– ident: ref19
  doi: 10.1109/TEVC.2006.882428
– ident: ref110
  doi: 10.1109/IJCNN52387.2021.9534083
– ident: ref68
  doi: 10.1016/j.apm.2017.10.015
– ident: ref58
  doi: 10.1016/j.eswa.2016.10.015
– ident: ref82
  doi: 10.1109/TEVC.2016.2611642
– ident: ref157
  doi: 10.1016/j.asoc.2020.106120
– ident: ref44
  doi: 10.1109/TEVC.2012.2204403
– ident: ref177
  doi: 10.1016/j.phycom.2020.101196
– ident: ref250
  doi: 10.1109/tcyb.2022.3214825
– ident: ref122
  doi: 10.1109/TEVC.2007.894202
– ident: ref124
  doi: 10.1016/j.asoc.2012.06.008
– ident: ref233
  doi: 10.1109/TCYB.2020.2980888
– ident: ref256
  doi: 10.1016/j.swevo.2019.03.015
– ident: ref14
  doi: 10.1016/j.swevo.2018.03.011
– volume-title: An ANN-assisted repair operator for evolutionary multiobjective optimization
  year: 2020
  ident: ref149
– ident: ref265
  doi: 10.1016/j.swevo.2022.101203
– ident: ref236
  doi: 10.1109/TCYB.2020.2989465
– ident: ref52
  doi: 10.1109/TEVC.2009.2034647
– ident: ref95
  doi: 10.1016/j.ins.2021.08.054
– ident: ref48
  doi: 10.1109/TCYB.2019.2960039
– ident: ref284
  doi: 10.1109/tcyb.2022.3170344
– ident: ref205
  doi: 10.1109/TEVC.2022.3159000
– ident: ref207
  doi: 10.1109/TEVC.2021.3115036
– start-page: 3352
  volume-title: Proc. World Congr. Comput. Intell. (WCCI)
  ident: ref100
  article-title: Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems
– ident: ref261
  doi: 10.1109/MCI.2021.3108310
– ident: ref291
  doi: 10.1109/TCYB.2018.2869674
– ident: ref56
  doi: 10.1109/TCYB.2020.2974100
– ident: ref27
  doi: 10.1109/tevc.2022.3168836
– ident: ref263
  doi: 10.1109/tevc.2022.3222844
– ident: ref202
  doi: 10.1109/TEVC.2022.3152582
– ident: ref64
  doi: 10.1016/j.swevo.2022.101074
– ident: ref147
  doi: 10.1109/TEVC.2021.3131952
– ident: ref99
  doi: 10.1109/TEVC.2017.2672668
– ident: ref63
  doi: 10.1109/CEC.2017.7969391
– ident: ref189
  doi: 10.1109/TEVC.2021.3103936
– ident: ref35
  doi: 10.1109/TEVC.2017.2712906
– ident: ref161
  doi: 10.1109/TCYB.2020.3041325
– ident: ref197
  doi: 10.1109/CEC.2012.6252865
– ident: ref86
  doi: 10.1109/TEVC.2018.2866927
– ident: ref239
  doi: 10.1016/j.swevo.2018.03.010
– ident: ref36
  doi: 10.1109/TEVC.2018.2869001
– ident: ref133
  doi: 10.1109/CEC.2005.1554970
– ident: ref106
  doi: 10.1109/TEVC.2019.2926151
– ident: ref116
  doi: 10.1109/CIS.2007.136
– ident: ref185
  doi: 10.1109/TSMC.2020.3044418
– ident: ref162
  doi: 10.1109/tcyb.2021.3109914
– ident: ref224
  doi: 10.1109/TCYB.2020.2969025
– ident: ref77
  doi: 10.3390/math9243152
– ident: ref227
  doi: 10.1109/TEVC.2022.3154416
– ident: ref165
  doi: 10.1109/TEVC.2006.880727
– ident: ref206
  doi: 10.1109/TETCI.2017.2769104
– year: 2021
  ident: ref62
  article-title: Multi-objective learning to predict pareto fronts using hypervolume maximization
  publication-title: arXiv:2102.04523
– ident: ref89
  doi: 10.1109/TCYB.2018.2834466
– ident: ref277
  doi: 10.1109/TEVC.2022.3145582
– ident: ref69
  doi: 10.1109/TEVC.2009.2021467
– ident: ref164
  doi: 10.1016/j.neucom.2019.12.048
– ident: ref30
  doi: 10.1007/s10462-021-10042-y
– ident: ref214
  doi: 10.1109/TEVC.2017.2771451
– ident: ref91
  doi: 10.3390/computation10030037
– ident: ref16
  doi: 10.1007/978-3-642-10701-6_2
– ident: ref98
  doi: 10.1109/CEC.2007.4424730
– ident: ref81
  doi: 10.1109/TCYB.2020.2971638
– ident: ref94
  doi: 10.1109/TEVC.2018.2874465
– ident: ref188
  doi: 10.1109/TEVC.2019.2899030
– ident: ref212
  doi: 10.1109/TEVC.2019.2926107
– ident: ref80
  doi: 10.1109/4235.797969
– ident: ref57
  doi: 10.1007/s11831-021-09562-1
– ident: ref219
  doi: 10.1109/TEVC.2016.2574621
– ident: ref142
  doi: 10.1145/3474059
– ident: ref103
  doi: 10.1162/evco.2009.17.2.135
– year: 2020
  ident: ref283
  article-title: Benchmarking in optimization: Best practice and open issues
  publication-title: arXiv:2007.03488
– ident: ref138
  doi: 10.1016/j.eswa.2020.113844
– ident: ref244
  doi: 10.1007/s12559-020-09777-7
– ident: ref252
  doi: 10.1109/CEC48606.2020.9185522
– ident: ref152
  doi: 10.1109/TCYB.2019.2952881
– ident: ref176
  doi: 10.1109/TEVC.2021.3060811
– ident: ref12
  doi: 10.1109/TEVC.2005.857695
– ident: ref286
  doi: 10.1109/tevc.2022.3197427
– ident: ref245
  doi: 10.1016/j.knosys.2020.106262
– ident: ref117
  doi: 10.1109/CEC.2010.5586465
– ident: ref292
  doi: 10.1109/tevc.2022.3197298
– ident: ref119
  doi: 10.1016/j.neucom.2014.03.070
– ident: ref266
  doi: 10.1109/tevc.2022.3232776
– year: 2022
  ident: ref279
  article-title: A secure federated data-driven evolutionary multi-objective optimization algorithm
  publication-title: arXiv:2210.08295
– ident: ref192
  doi: 10.1007/s00500-003-0328-5
– ident: ref289
  doi: 10.1109/TEVC.2021.3110506
– ident: ref51
  doi: 10.1109/TEVC.2017.2758360
– ident: ref6
  doi: 10.1016/j.neucom.2022.01.099
– ident: ref171
  doi: 10.1007/s00500-016-2126-x
– ident: ref230
  doi: 10.1109/TCYB.2020.3017017
– year: 2021
  ident: ref43
  article-title: Decomposition multi-objective evolutionary optimization: From state-of-the-art to future opportunities
  publication-title: arXiv:2108.09588
– ident: ref262
  doi: 10.1109/tevc.2022.3233642
– ident: ref193
  doi: 10.1007/978-3-642-41278-3_67
– ident: ref210
  doi: 10.1145/3524495
– ident: ref26
  doi: 10.1109/TEVC.2019.2940828
– ident: ref267
  doi: 10.1109/MCI.2013.2264563
– ident: ref238
  doi: 10.1109/ACCESS.2021.3065741
– ident: ref67
  doi: 10.1016/j.ins.2020.03.104
– ident: ref155
  doi: 10.1109/TCYB.2020.3041212
– ident: ref24
  doi: 10.1007/bf00113892
– ident: ref90
  doi: 10.1007/978-3-319-10762-2_53
– ident: ref15
  doi: 10.1038/s42256-020-00278-8
– ident: ref87
  doi: 10.1109/TEVC.2018.2865495
– ident: ref234
  doi: 10.1109/TEVC.2020.3023480
– ident: ref42
  doi: 10.1109/TEVC.2020.3013290
– ident: ref229
  doi: 10.1007/s12293-015-0166-x
– ident: ref109
  doi: 10.1016/j.swevo.2021.100985
– ident: ref218
  doi: 10.1109/SSCI44817.2019.9002815
– ident: ref10
  doi: 10.1109/TEVC.2021.3079985
– ident: ref158
  doi: 10.1109/TEVC.2019.2918140
– ident: ref113
  doi: 10.1016/j.swevo.2011.08.003
– ident: ref92
  doi: 10.1109/ACCESS.2019.2898987
– ident: ref123
  doi: 10.1007/s00500-013-1151-2
– ident: ref276
  doi: 10.1109/TEVC.2020.2975381
– ident: ref139
  doi: 10.1109/TCYB.2019.2906383
– ident: ref34
  doi: 10.1109/TEVC.2019.2909744
– ident: ref258
  doi: 10.1109/TCYB.2013.2245892
– ident: ref241
  doi: 10.1109/TNNLS.2019.2920887
– ident: ref184
  doi: 10.1109/TEVC.2021.3073648
– ident: ref105
  doi: 10.1109/TCYB.2020.3020630
– ident: ref179
  doi: 10.1007/s11633-022-1317-4
– ident: ref209
  doi: 10.1109/TEVC.2019.2958075
– ident: ref253
  doi: 10.1109/TEVC.2017.2783441
– ident: ref208
  doi: 10.1007/978-3-642-38416-5_4
– ident: ref183
  doi: 10.1109/TEVC.2016.2622301
– ident: ref4
  doi: 10.1109/TEVC.2011.2169968
– ident: ref111
  doi: 10.1109/tnnls.2022.3148435
– ident: ref225
  doi: 10.1109/tevc.2022.3147568
– ident: ref33
  doi: 10.1145/3470971
– ident: ref180
  doi: 10.1109/TEVC.2005.851274
– ident: ref254
  doi: 10.1109/TCYB.2020.3014126
– ident: ref114
  doi: 10.1109/TEVC.2013.2247404
– ident: ref129
  doi: 10.1007/978-3-642-19893-9_21
– ident: ref160
  doi: 10.1109/TCYB.2020.2979930
– ident: ref246
  doi: 10.1109/JAS.2022.105677
– ident: ref127
  doi: 10.1016/S0888-613X(02)00090-7
– ident: ref174
  doi: 10.1016/j.asoc.2020.106693
– ident: ref251
  doi: 10.1109/tevc.2023.3307244
– ident: ref41
  doi: 10.1109/4235.996017
– ident: ref71
  doi: 10.1109/TCYB.2018.2883914
– ident: ref101
  doi: 10.1109/TEVC.2012.2185847
– ident: ref211
  doi: 10.1109/CEC.2017.7969332
– ident: ref172
  doi: 10.1016/j.asoc.2019.105879
– ident: ref278
  doi: 10.1109/tevc.2022.3230822
– ident: ref60
  doi: 10.1007/s40747-018-0080-1
– ident: ref198
  doi: 10.1109/TEVC.2020.2986348
– ident: ref75
  doi: 10.1109/TCYB.2018.2856208
– ident: ref272
  doi: 10.1109/tevc.2022.3179256
– volume: 38
  start-page: 9
  year: 2000
  ident: ref59
  article-title: Learnable evolution model: Evolutionary processes guided by machine learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007677805582
– ident: ref8
  doi: 10.1145/3467477
– ident: ref259
  doi: 10.1109/TCYB.2021.3070434
– ident: ref29
  doi: 10.1109/MCI.2020.3039066
– ident: ref76
  doi: 10.1162/evco.2007.15.4.493
– ident: ref144
  doi: 10.2514/6.2017-0794
– ident: ref178
  doi: 10.1016/j.applthermaleng.2018.10.020
– ident: ref65
  doi: 10.1109/ISME.2010.274
– ident: ref213
  doi: 10.1109/TCYB.2018.2864345
– ident: ref204
  doi: 10.1109/CEC.2016.7744206
– ident: ref235
  doi: 10.1109/TCYB.2020.3029176
– ident: ref153
  doi: 10.1007/s00500-019-04518-x
– ident: ref290
  doi: 10.1109/TEVC.2022.3162993
– ident: ref190
  doi: 10.1109/TEVC.2017.2697503
– ident: ref108
  doi: 10.1109/TCYB.2021.3086501
– ident: ref134
  doi: 10.1007/s12293-022-00358-9
– ident: ref196
  doi: 10.1007/s11222-014-9477-x
– ident: ref55
  doi: 10.1109/TCYB.2020.2981733
– ident: ref255
  doi: 10.1109/TEVC.2022.3144180
– ident: ref85
  doi: 10.1016/j.asoc.2015.06.020
– ident: ref232
  doi: 10.1109/TEVC.2021.3135020
– ident: ref115
  doi: 10.1007/3-540-45712-7_29
– ident: ref31
  doi: 10.1016/j.neucom.2014.06.076
– ident: ref143
  doi: 10.1109/CEC.2010.5586501
– ident: ref222
  doi: 10.1109/TEVC.2021.3101697
– ident: ref49
  doi: 10.1109/tevc.2021.3099487
– ident: ref79
  doi: 10.1109/JAS.2021.1003817
– ident: ref248
  doi: 10.1162/evco_a_00300
– ident: ref282
  doi: 10.1109/tevc.2022.3199045
– ident: ref150
  doi: 10.1109/CEC.2014.6900519
– ident: ref220
  doi: 10.1109/TEVC.2019.2902626
– ident: ref288
  doi: 10.1109/TCYB.2020.3028070
– ident: ref274
  doi: 10.1109/tevc.2022.3182810
– ident: ref186
  doi: 10.1007/s40747-021-00362-5
– ident: ref39
  doi: 10.1109/tcyb.2022.3164399
– ident: ref270
  doi: 10.1109/tevc.2022.3195668
– ident: ref22
  doi: 10.1109/MCI.2014.2350953
– ident: ref54
  doi: 10.1109/TCYB.2016.2554622
– ident: ref112
  doi: 10.1080/0305215X.2011.604316
– ident: ref88
  doi: 10.1016/j.swevo.2019.02.010
– ident: ref257
  doi: 10.1016/j.ins.2020.08.101
– ident: ref215
  doi: 10.1109/tcyb.2021.3128584
– ident: ref11
  doi: 10.1109/TCYB.2020.2980815
– ident: ref148
  doi: 10.1145/3377929.3389925
– ident: ref169
  doi: 10.1109/TEVC.2021.3106168
– year: 2021
  ident: ref61
  article-title: Self-evolutionary optimization for Pareto front learning
  publication-title: arXiv:2110.03461
– ident: ref163
  doi: 10.1109/TCSS.2020.2964027
– ident: ref231
  doi: 10.1109/TEVC.2021.3056514
– ident: ref141
  doi: 10.1145/1143997.1144266
– ident: ref140
  doi: 10.1109/TSMC.2021.3131312
– ident: ref46
  doi: 10.1109/TEVC.2016.2587749
– ident: ref175
  doi: 10.1109/SITIS.2010.22
– ident: ref121
  doi: 10.1145/1068009.1068122
– ident: ref187
  doi: 10.1109/TCYB.2018.2794503
– ident: ref50
  doi: 10.1109/TEVC.2018.2836912
– ident: ref96
  doi: 10.1109/TCYB.2016.2638902
– ident: ref199
  doi: 10.1007/s00500-017-2965-0
– ident: ref120
  doi: 10.1145/1276958.1277079
– ident: ref131
  doi: 10.1109/TEVC.2015.2395073
– ident: ref200
  doi: 10.1109/CEC.2014.6900641
– ident: ref93
  doi: 10.1145/1830483.1830575
– ident: ref97
  doi: 10.1016/j.ins.2017.09.051
– ident: ref195
  doi: 10.1007/978-3-540-87700-4_78
– ident: ref287
  doi: 10.1109/TCYB.2015.2460261
– ident: ref118
  doi: 10.1016/j.orl.2011.01.002
– ident: ref275
  doi: 10.1109/tevc.2022.3211643
– ident: ref285
  doi: 10.1109/tevc.2022.3233364
– ident: ref240
  doi: 10.1109/TSMC.2021.3096220
– ident: ref40
  doi: 10.1109/tevc.2022.3166482
– ident: ref201
  doi: 10.1109/TEVC.2021.3098257
– ident: ref260
  doi: 10.1109/TCYB.2016.2602561
– ident: ref228
  doi: 10.1109/TEVC.2017.2682274
– ident: ref37
  doi: 10.1007/s12559-016-9395-7
– ident: ref17
  doi: 10.1145/2792984
– ident: ref28
  doi: 10.1016/j.swevo.2022.101225
– ident: ref25
  doi: 10.1080/00207543.2018.1437288
– ident: ref216
  doi: 10.1016/j.ejor.2021.01.028
– ident: ref221
  doi: 10.1109/TEVC.2021.3133874
– ident: ref130
  doi: 10.1109/SMC52423.2021.9658650
– ident: ref167
  doi: 10.1007/978-3-540-69868-5_10
– ident: ref104
  doi: 10.1109/TEVC.2017.2695579
– ident: ref182
  doi: 10.1109/TEVC.2009.2033671
– ident: ref45
  doi: 10.1109/TEVC.2013.2281535
– ident: ref128
  doi: 10.1109/TEVC.2013.2281524
– ident: ref217
  doi: 10.1109/MCI.2021.3108311
– ident: ref280
  doi: 10.1109/TEVC.2020.2991717
– ident: ref151
  doi: 10.1007/s10589-022-00348-0
– ident: ref83
  doi: 10.1109/TEVC.2015.2420112
– ident: ref132
  doi: 10.1016/j.ins.2019.05.091
– ident: ref5
  doi: 10.1109/TEVC.2012.2196800
– ident: ref159
  doi: 10.1109/CEC55065.2022.9870259
– ident: ref21
  doi: 10.1109/MCI.2014.2326099
– ident: ref271
  doi: 10.1109/tcyb.2022.3186591
– ident: ref281
  doi: 10.1109/TEVC.2019.2911736
– ident: ref13
  doi: 10.1109/4235.728207
– ident: ref9
  doi: 10.1109/TEVC.2013.2290086
– ident: ref145
  doi: 10.1109/CEC.2017.7969568
– ident: ref223
  doi: 10.1109/TEVC.2019.2962747
– ident: ref18
  doi: 10.1109/TEVC.2021.3130838
– ident: ref136
  doi: 10.1109/tnnls.2021.3113158
– ident: ref20
  doi: 10.1109/TEVC.2021.3139437
– ident: ref243
  doi: 10.1109/TEVC.2021.3131236
– ident: ref146
  doi: 10.1109/TEVC.2022.3155593
– ident: ref194
  doi: 10.1145/3071178.3071276
– ident: ref226
  doi: 10.1109/TEVC.2021.3098523
– ident: ref166
  doi: 10.1109/TEVC.2016.2602348
– ident: ref23
  doi: 10.1109/MCI.2011.942584
– ident: ref66
  doi: 10.1007/978-3-319-10762-2_67
– ident: ref1
  doi: 10.1109/TEVC.2005.846356
– ident: ref107
  doi: 10.1109/TCYB.2020.2977661
– ident: ref273
  doi: 10.1109/TSMC.2022.3163129
– ident: ref126
  doi: 10.1016/j.swevo.2018.04.009
– ident: ref170
  doi: 10.1016/j.ins.2019.08.069
– ident: ref78
  doi: 10.1109/TSMC.2022.3186546
– volume: 3
  start-page: 1260
  volume-title: Proc. Int. Conf. Nat. Comput.
  ident: ref72
  article-title: Multiobjective optimization by decomposition with Pareto-adaptive weight vectors
– ident: ref191
  doi: 10.1109/TEVC.2018.2869247
– ident: ref84
  doi: 10.1109/TEVC.2016.2519378
– ident: ref2
  doi: 10.1109/TEVC.2002.800880
– ident: ref73
  doi: 10.1109/TEVC.2016.2521175
– ident: ref181
  doi: 10.1109/TEVC.2018.2802784
– ident: ref47
  doi: 10.1109/TEVC.2019.2895108
– ident: ref156
  doi: 10.1109/TII.2018.2836189
– ident: ref168
  doi: 10.1109/tetci.2022.3146882
– ident: ref264
  doi: 10.1007/s12559-022-10012-8
– ident: ref74
  doi: 10.1109/TCYB.2020.3008697
– ident: ref3
  doi: 10.1007/s40747-019-0113-4
– ident: ref237
  doi: 10.1109/TCYB.2020.3043509
– volume: 16
  volume-title: Multi-Objective Machine Learning
  year: 2006
  ident: ref7
  doi: 10.1007/3-540-33019-4_13
– ident: ref135
  doi: 10.1109/TCYB.2020.2985081
– ident: ref32
  doi: 10.1109/tevc.2022.3155533
– ident: ref247
  doi: 10.1145/3377930.3390147
– ident: ref154
  doi: 10.1109/TEVC.2016.2600642
– ident: ref53
  doi: 10.1109/TSMCC.2008.919172
– ident: ref102
  doi: 10.1016/j.ins.2019.01.030
– ident: ref242
  doi: 10.1109/TEVC.2019.2925722
– ident: ref203
  doi: 10.1016/j.ins.2018.06.073
– ident: ref38
  doi: 10.1109/TEVC.2021.3060014
SSID ssj0014519
Score 2.6496906
Snippet Recent decades have witnessed great advancements in multiobjective evolutionary algorithms (MOEAs) for multiobjective optimization problems (MOPs). However,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1941
SubjectTerms Evolution (biology)
Evolutionary algorithms
Evolutionary computation
Generators
Genetic algorithms
Learnable evolutionary algorithms
Machine learning
machine learning (ML)
Multiple objective analysis
Optimization
scalable multiobjective optimization
Scaling
Search problems
Sociology
Statistics
Taxonomy
Title A Survey on Learnable Evolutionary Algorithms for Scalable Multiobjective Optimization
URI https://ieeexplore.ieee.org/document/10056413
https://www.proquest.com/docview/2895884124
Volume 27
WOSCitedRecordID wos001125199200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5R4gEPoogRRdODJ5PhfrHSIyEQT2giEm5L23X-CGxm_Ej4733tCiExmnjboW2Wfe17X9d-7wO4S7jgVEjhCJ8nTqgi4fCuSx2Vik4aIaNNhDBmE3Q06k6n7NmK1Y0WRillLp-ptn40Z_lJLlf6VxmucEzXofaoPaSUlmKt3ZGBrpNS3qZnSBm7U3uE6bnsYTyY9NvaJ7wdYMYPtMZ-LwkZV5Ufodjkl2Htn292CieWSJJeifwZHKisDrWtSQOxa7YOx3sVB-tQ1eSyrM18DpMeeVkVa7UheUZMoVWtoyKDtZ2OvNiQ3uwtLz6W7_MFQXqLw_KZaWSEu7n4LOMlecLIM7eSzga8Dgfj_qNjfRYc6bNw6XjcC1OpAiFSmriKe1GCNAR5ZJT6stMJfB4qXxtZeTxF6ExFeZ9LLqWPIUEEwQVUsjxTl0AQedVhXKYp7naZroUW0jBUOHJEBWVRE9zth4-lLUKuvTBmsdmMuCzWWMUaq9hi1YT7XZevsgLHX40bGpy9hiUuTWht4Y3tIl3EuNfUMl1kOFe_dLuGqh69vL7SgsqyWKkbOJJrRKq4NfPvGw4u2as
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3IFNQHp1NxfubBJ6GzTdN2fRwyUdQpOMfeSpKmfrCt0n3A_r03aSYDUfCtD2laepJ7T5qccwHOUy54JKRwBOWpw1QoHN50I0dlIshCZLSpEKbYRNTpNPv9-MmK1Y0WRillDp-phr40e_lpLqf6VxnOcEzXTNeoXQ0Yo14p1_reNNBOKeV5-hhJY7NvNzE9N77stntXDV0pvOFjzve1yn4pDZm6Kj-Csckw19V_vts2bFkqSVol9juwokY1qC7KNBA7a2uwueQ5WIMNTS9Ld-Zd6LXI87SYqTnJR8RYrWolFWnP7IDkxZy0Bq958T55G44JElzslg9MIyPdzcVHGTHJI8aeoRV17sHLdbt7dePYSguOpDGbOB73WCaVL0QWpa7iXpgiEUEmGWZUBoFPOVNUl7LyeIbgGU95yiWXkmJQEL6_D5VRPlIHQBB7FcRcZhmud2PthsYixhT2HEYiisM6uIsPn0hrQ66rYQwSsxxx40RjlWisEotVHS6-b_ksPTj-arynwVlqWOJSh-MFvImdpuMEV5taqIsc5_CX285g_ab7cJ_c33bujmBDP6k8zHIMlUkxVSewJmeIWnFqxuIXiNfc8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Learnable+Evolutionary+Algorithms+for+Scalable+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Liu%2C+Songbai&rft.au=Lin%2C+Qiuzhen&rft.au=Li%2C+Jianqiang&rft.au=Tan%2C+Kay+Chen&rft.date=2023-12-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=27&rft.issue=6&rft.spage=1941&rft.epage=1961&rft_id=info:doi/10.1109%2FTEVC.2023.3250350&rft.externalDocID=10056413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon