A hybrid optimization algorithm based on fitness landscape analysis for generalized job-shop scheduling problems

•JSP problem domains are formed due to different constraints or optimization objectives.•It is very valuable to design optimization algorithms with generalization for JSP domains.•Fitness landscape analysis can provide a basis for the design of optimization algorithms. Due to the diverse constraints...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & industrial engineering Ročník 208; s. 111390
Hlavní autori: Gui, Lin, Li, Xinyu, Gao, Liang, Liu, Qihao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.10.2025
Predmet:
ISSN:0360-8352
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •JSP problem domains are formed due to different constraints or optimization objectives.•It is very valuable to design optimization algorithms with generalization for JSP domains.•Fitness landscape analysis can provide a basis for the design of optimization algorithms. Due to the diverse constraints and objectives inherent to job-shop scheduling problems (JSPs), this problem domain has emerged as a significant challenge. In existing research, the optimization algorithm must be tailored to specific production scenarios, which prolongs the development cycle and increases the cost. This paper proposes a hybrid optimization algorithm for addressing diverse JSPs within the problem domain (generalized JSPs) based on fitness landscape analysis. Firstly, a mathematical model of the generalized JSPs is constructed, and then the common features in different problems are obtained based on fitness landscape analysis. On this basis, this paper proposes a hybrid optimization algorithm and verifies it in three different JSPs. The superiority of the proposed algorithm is then verified in comparison with the existing best meta-heuristic algorithms for solving JSPs.
AbstractList •JSP problem domains are formed due to different constraints or optimization objectives.•It is very valuable to design optimization algorithms with generalization for JSP domains.•Fitness landscape analysis can provide a basis for the design of optimization algorithms. Due to the diverse constraints and objectives inherent to job-shop scheduling problems (JSPs), this problem domain has emerged as a significant challenge. In existing research, the optimization algorithm must be tailored to specific production scenarios, which prolongs the development cycle and increases the cost. This paper proposes a hybrid optimization algorithm for addressing diverse JSPs within the problem domain (generalized JSPs) based on fitness landscape analysis. Firstly, a mathematical model of the generalized JSPs is constructed, and then the common features in different problems are obtained based on fitness landscape analysis. On this basis, this paper proposes a hybrid optimization algorithm and verifies it in three different JSPs. The superiority of the proposed algorithm is then verified in comparison with the existing best meta-heuristic algorithms for solving JSPs.
ArticleNumber 111390
Author Gao, Liang
Li, Xinyu
Liu, Qihao
Gui, Lin
Author_xml – sequence: 1
  givenname: Lin
  surname: Gui
  fullname: Gui, Lin
  organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 2
  givenname: Xinyu
  surname: Li
  fullname: Li, Xinyu
  organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 3
  givenname: Liang
  surname: Gao
  fullname: Gao, Liang
  email: gaoliang@mail.hust.edu.cn
  organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 4
  givenname: Qihao
  surname: Liu
  fullname: Liu, Qihao
  organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
BookMark eNp9kMtqwzAQRbVIoUnaD-hOP2BXsi3HoqsQ-oJAN-1a6DGOZWzJSG7B-foqpOuuBmbuGWbOBq2cd4DQAyU5JbR-7HNtIS9IwXJKacnJCq1JWZOsKVlxizYx9oSQinG6RtMed4sK1mA_zXa0Zzlb77AcTj7YuRuxkhHS0OHWzg5ixIN0Jmo5AZZODku0Ebc-4BM4CHKw55Tuvcpi5yccdQfme7DuhKfg1QBjvEM3rRwi3P_VLfp6ef48vGXHj9f3w_6Y6YJXc0a50twURJaNYVDrRhlFigqqnawoa8rUrrmmlLcUdiWBui7Sh2zHGVcMVFtuEb3u1cHHGKAVU7CjDIugRFw0iV4kTeKiSVw1JebpykA67MdCEDFFnAZjA-hZGG__oX8BMrV17Q
Cites_doi 10.1049/cim2.12049
10.1016/j.cie.2020.106778
10.1109/TASE.2024.3356255
10.1016/j.swevo.2024.101485
10.1016/j.cie.2022.108205
10.1287/mnsc.44.2.262
10.1016/0375-9601(92)90557-3
10.1016/j.ejor.2023.05.017
10.1287/opre.40.1.113
10.1016/j.rineng.2024.103670
10.26599/TST.2023.9010140
10.1016/j.cor.2005.11.022
10.1080/00207543.2022.2060772
10.1016/j.cor.2005.12.002
10.1016/j.aei.2024.102401
10.1016/j.rcim.2024.102782
10.1016/j.cam.2024.116475
10.1186/s10033-023-00911-8
10.1016/j.cma.2024.117588
10.1016/j.cor.2014.08.006
10.1007/s10462-024-11069-7
10.1016/j.cor.2006.02.024
10.1016/j.jmsy.2023.09.002
10.1109/4235.585893
10.1016/j.eswa.2022.119077
10.1016/j.cor.2022.106095
10.1016/j.ejor.2022.09.006
10.1038/nature14544
10.1016/j.cor.2023.106222
10.1016/0377-2217(93)90182-M
10.1016/j.cor.2011.12.005
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2025.111390
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_cie_2025_111390
S0360835225005364
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AAEDT
AAEDW
AAFWJ
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABDPE
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACNCT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADGUI
ADMUD
ADNMO
ADRHT
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c294t-19bc9d20a38d5e6c8bdb024e47a4158338d69c119f1e730e66236057959b5ebf3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001539066200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Sat Nov 29 07:34:16 EST 2025
Sat Oct 04 17:00:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Generalized job-shop scheduling problems
Hybrid optimization algorithm
Fitness landscape analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-19bc9d20a38d5e6c8bdb024e47a4158338d69c119f1e730e66236057959b5ebf3
OpenAccessLink https://doi.org/10.1016/j.cie.2025.111390
ParticipantIDs crossref_primary_10_1016_j_cie_2025_111390
elsevier_sciencedirect_doi_10_1016_j_cie_2025_111390
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dauzère-Pérès, Ding, Shen, Tamssaouet (b0030) 2024; 314
Xie, Li, Gao, Gui (b0175) 2022; 169
Yao, Gui, Li, Gao (b0180) 2024; 89
Chen, Yang, Li, Wang (b0025) 2020; 149
Gui, Li, Zhang, Gao (b0070) 2023; 2023
Talbi (b0120) 2009
Van Laarhoven, Aarts, Lenstra (b0135) 1992; 40
Eiben, Smith (b0040) 2015; 521
Ba, Yuan, Liu (b0005) 2024; 1–33
Varshney, Kumar, Abualigah (b0140) 2025; 462
Bozorg-Haddad, Solgi, Loáiciga (b0020) 2017
Wang, Li, Gao, Li (b0145) 2024; 60
Gui, Li, Gao, Xie (b0065) 2022; 4
Xie, Li, Gao, Gui (b0165) 2023; 71
Schiavinotto, Stützle (b0105) 2007; 34
Gui, Li, Gao, Wang (b0060) 2023; 36
Gui, Li, Zhang, Gao (b0075) 2024; 1–21
Stadler, Schnabl (b0110) 1992; 161
Maiti, Biswas, Ezugwu, Bera, Alzahrani, Alblehai, Abualigah (b0090) 2025; 58
Zhang, Li, Rao, Guan (b0195) 2008; 35
Biswas, Singh, Maiti, Ezugwu, Saleem, Smerat, Bera (b0015) 2025; 434
Wolpert, Macready (b0160) 1997; 1
Tian, Zhang, Fan, Li, Gao (b0125) 2024; 85
Khodadadi, Ehteram, Karami, Nadimi-Shahraki, Abualigah, Mirjalili (b0085) 2025; 25
Taillard (b0115) 1993; 64
Wang (b0150) 2012; 39
Davis (b0035) 2014
Zhang, Li, Guan, Rao (b0190) 2007; 34
Xie, Li, Gao, Gui (b0170) 2023; 61
Fontes, Homayouni, Gonçalves (b0045) 2023; 306
Peng, Lü, Cheng (b0095) 2015; 53
Goli, Ala, Hajiaghaei-Keshteli (b0055) 2023; 213
Gui, Li, Zhang, Gao (b0080) 2024; 29
Pinedo (b0100) 2022
Yao, Liu, Fu, Li, Yu, Gao, Zhou (b0185) 2025; 22
Balas, Vazacopoulos (b0010) 1998; 44
Tutumlu, Saraç (b0130) 2023; 155
Gendreau, Potvin (b0050) 2010
Wang, Cai, Li, Yang, Zhao, Xie (b0155) 2023; 151
Schiavinotto (10.1016/j.cie.2025.111390_b0105) 2007; 34
Zhang (10.1016/j.cie.2025.111390_b0190) 2007; 34
Zhang (10.1016/j.cie.2025.111390_b0195) 2008; 35
Biswas (10.1016/j.cie.2025.111390_b0015) 2025; 434
Dauzère-Pérès (10.1016/j.cie.2025.111390_b0030) 2024; 314
Davis (10.1016/j.cie.2025.111390_b0035) 2014
Yao (10.1016/j.cie.2025.111390_b0180) 2024; 89
Tian (10.1016/j.cie.2025.111390_b0125) 2024; 85
Stadler (10.1016/j.cie.2025.111390_b0110) 1992; 161
Khodadadi (10.1016/j.cie.2025.111390_b0085) 2025; 25
Yao (10.1016/j.cie.2025.111390_b0185) 2025; 22
Eiben (10.1016/j.cie.2025.111390_b0040) 2015; 521
Tutumlu (10.1016/j.cie.2025.111390_b0130) 2023; 155
Pinedo (10.1016/j.cie.2025.111390_b0100) 2022
Gui (10.1016/j.cie.2025.111390_b0065) 2022; 4
Bozorg-Haddad (10.1016/j.cie.2025.111390_b0020) 2017
Gui (10.1016/j.cie.2025.111390_b0080) 2024; 29
Maiti (10.1016/j.cie.2025.111390_b0090) 2025; 58
Varshney (10.1016/j.cie.2025.111390_b0140) 2025; 462
Wolpert (10.1016/j.cie.2025.111390_b0160) 1997; 1
Xie (10.1016/j.cie.2025.111390_b0175) 2022; 169
Gendreau (10.1016/j.cie.2025.111390_b0050) 2010
Gui (10.1016/j.cie.2025.111390_b0075) 2024; 1–21
Wang (10.1016/j.cie.2025.111390_b0145) 2024; 60
Wang (10.1016/j.cie.2025.111390_b0150) 2012; 39
Goli (10.1016/j.cie.2025.111390_b0055) 2023; 213
Peng (10.1016/j.cie.2025.111390_b0095) 2015; 53
Chen (10.1016/j.cie.2025.111390_b0025) 2020; 149
Gui (10.1016/j.cie.2025.111390_b0070) 2023; 2023
Van Laarhoven (10.1016/j.cie.2025.111390_b0135) 1992; 40
Wang (10.1016/j.cie.2025.111390_b0155) 2023; 151
Ba (10.1016/j.cie.2025.111390_b0005) 2024; 1–33
Xie (10.1016/j.cie.2025.111390_b0170) 2023; 61
Talbi (10.1016/j.cie.2025.111390_b0120) 2009
Xie (10.1016/j.cie.2025.111390_b0165) 2023; 71
Taillard (10.1016/j.cie.2025.111390_b0115) 1993; 64
Gui (10.1016/j.cie.2025.111390_b0060) 2023; 36
Balas (10.1016/j.cie.2025.111390_b0010) 1998; 44
Fontes (10.1016/j.cie.2025.111390_b0045) 2023; 306
References_xml – volume: 521
  start-page: 476
  year: 2015
  end-page: 482
  ident: b0040
  article-title: From evolutionary computation to the evolution of things
– volume: 71
  start-page: 82
  year: 2023
  end-page: 94
  ident: b0165
  article-title: A hybrid genetic tabu search algorithm for distributed flexible job shop scheduling problems
– volume: 213
  year: 2023
  ident: b0055
  article-title: Efficient multi-objective meta-heuristic algorithms for energy-aware non-permutation flow-shop scheduling problem
– volume: 169
  year: 2022
  ident: b0175
  article-title: A hybrid algorithm with a new neighborhood structure for job shop scheduling problems
– volume: 89
  year: 2024
  ident: b0180
  article-title: Tabu search based on novel neighborhood structures for solving job shop scheduling problem integrating finite transportation resources
– volume: 434
  year: 2025
  ident: b0015
  article-title: Integrating Differential Evolution into Gazelle Optimization for advanced global optimization and engineering applications
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 306
  start-page: 1140
  year: 2023
  end-page: 1157
  ident: b0045
  article-title: A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources
– volume: 151
  year: 2023
  ident: b0155
  article-title: Solving non-permutation flow-shop scheduling problem via a novel deep reinforcement learning approach
– volume: 155
  year: 2023
  ident: b0130
  article-title: A MIP model and a hybrid genetic algorithm for flexible job-shop scheduling problem with job-splitting
– volume: 39
  start-page: 2291
  year: 2012
  end-page: 2299
  ident: b0150
  article-title: A new hybrid genetic algorithm for job shop scheduling problem
– volume: 35
  start-page: 282
  year: 2008
  end-page: 294
  ident: b0195
  article-title: A very fast TS/SA algorithm for the job shop scheduling problem
– volume: 2023
  start-page: 532
  year: 2023
  end-page: 541
  ident: b0070
  article-title: A parallel tabu search algorithm based on uniform sampling for generalized job-shop scheduling problems
  publication-title: Proceedings of International Conference on Computers and Industrial Engineering, Sharjah, The United Arab Emirates, Computers and Industrial Engineering
– volume: 60
  year: 2024
  ident: b0145
  article-title: A multi-disjunctive-graph model-based memetic algorithm for the distributed job shop scheduling problem
– volume: 53
  start-page: 154
  year: 2015
  end-page: 164
  ident: b0095
  article-title: A tabu search/path relinking algorithm to solve the job shop scheduling problem
– volume: 25
  year: 2025
  ident: b0085
  article-title: Leader selection based Multi-Objective Flow Direction Algorithm (MOFDA): A novel approach for engineering design problems
  publication-title: Results in Engineering
– volume: 314
  start-page: 409
  year: 2024
  end-page: 432
  ident: b0030
  article-title: The flexible job shop scheduling problem: A review
– volume: 1–21
  year: 2024
  ident: b0075
  article-title: A uniform sampling method for permutation space
  publication-title: Annals of Operations Research
– year: 2022
  ident: b0100
  article-title: Scheduling: Theory, Algorithms, and Systems
– volume: 34
  start-page: 3229
  year: 2007
  end-page: 3242
  ident: b0190
  article-title: A tabu search algorithm with a new neighborhood structure for the job shop scheduling problem
– volume: 85
  year: 2024
  ident: b0125
  article-title: A genetic algorithm with critical path-based variable neighborhood search for distributed assembly job shop scheduling problem
– volume: 36
  start-page: 87
  year: 2023
  ident: b0060
  article-title: Necessary and sufficient conditions for feasible neighbourhood solutions in the local search of the job-shop scheduling problem
– year: 2017
  ident: b0020
  article-title: Metaheuristic and evolutionary algorithms for engineering optimization
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b0160
  article-title: No free lunch theorems for optimization
– volume: 64
  start-page: 278
  year: 1993
  end-page: 285
  ident: b0115
  article-title: Benchmarks for basic scheduling problems
– volume: 149
  year: 2020
  ident: b0025
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
– volume: 34
  start-page: 3143
  year: 2007
  end-page: 3153
  ident: b0105
  article-title: A review of metrics on permutations for search landscape analysis
– volume: 4
  start-page: 157
  year: 2022
  end-page: 165
  ident: b0065
  article-title: An approximate evaluation method for neighbourhood solutions in job shop scheduling problem
– volume: 462
  year: 2025
  ident: b0140
  article-title: Hybridizing remora and aquila optimizer with dynamic oppositional learning for structural engineering design problems
  publication-title: Journal of Computational and Applied Mathematics
– volume: 61
  start-page: 2147
  year: 2023
  end-page: 2161
  ident: b0170
  article-title: A new neighbourhood structure for job shop scheduling problems
  publication-title: h
– volume: 161
  start-page: 337
  year: 1992
  end-page: 344
  ident: b0110
  article-title: The landscape of the traveling salesman problem
– volume: 29
  start-page: 1368
  year: 2024
  end-page: 1389
  ident: b0080
  article-title: Domain Knowledge Used in Meta-Heuristic Algorithms for the Job-Shop Scheduling Problem: Review and Analysis
– year: 2010
  ident: b0050
  article-title: 2010
– volume: 44
  start-page: 262
  year: 1998
  end-page: 275
  ident: b0010
  article-title: Guided local search with shifting bottleneck for job shop scheduling
– start-page: 136
  year: 2014
  end-page: 140
  ident: b0035
  publication-title: January). Job shop scheduling with genetic algorithms
– volume: 1–33
  year: 2024
  ident: b0005
  article-title: A modified memetic algorithm with multi-operation precise joint movement neighbourhood structure for the assembly job shop scheduling problem
  publication-title: International
– volume: 40
  start-page: 113
  year: 1992
  end-page: 125
  ident: b0135
  article-title: Job shop scheduling by simulated annealing
– volume: 58
  start-page: 69
  year: 2025
  ident: b0090
  article-title: Enhanced crayfish optimization algorithm with differential evolution’s mutation and crossover strategies for global optimization and engineering applications
  publication-title: Artificial Intelligence Review
– volume: 22
  start-page: 7449
  year: 2025
  end-page: 7462
  ident: b0185
  article-title: A novel mathematical model for the flexible job-shop scheduling problem with limited automated guided vehicles
– year: 2009
  ident: b0120
  article-title: Metaheuristics: From design to implementation
– volume: 4
  start-page: 157
  issue: 3
  year: 2022
  ident: 10.1016/j.cie.2025.111390_b0065
  article-title: An approximate evaluation method for neighbourhood solutions in job shop scheduling problem
  publication-title: IET Collaborative Intelligent Manufacturing
  doi: 10.1049/cim2.12049
– year: 2009
  ident: 10.1016/j.cie.2025.111390_b0120
– volume: 149
  year: 2020
  ident: 10.1016/j.cie.2025.111390_b0025
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106778
– year: 2010
  ident: 10.1016/j.cie.2025.111390_b0050
– volume: 22
  start-page: 7449
  year: 2025
  ident: 10.1016/j.cie.2025.111390_b0185
  article-title: A novel mathematical model for the flexible job-shop scheduling problem with limited automated guided vehicles
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2024.3356255
– volume: 85
  year: 2024
  ident: 10.1016/j.cie.2025.111390_b0125
  article-title: A genetic algorithm with critical path-based variable neighborhood search for distributed assembly job shop scheduling problem
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2024.101485
– volume: 169
  year: 2022
  ident: 10.1016/j.cie.2025.111390_b0175
  article-title: A hybrid algorithm with a new neighborhood structure for job shop scheduling problems
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2022.108205
– volume: 44
  start-page: 262
  issue: 2
  year: 1998
  ident: 10.1016/j.cie.2025.111390_b0010
  article-title: Guided local search with shifting bottleneck for job shop scheduling
  publication-title: Management Science
  doi: 10.1287/mnsc.44.2.262
– volume: 2023
  start-page: 532
  year: 2023
  ident: 10.1016/j.cie.2025.111390_b0070
  article-title: A parallel tabu search algorithm based on uniform sampling for generalized job-shop scheduling problems
  publication-title: Proceedings of International Conference on Computers and Industrial Engineering, Sharjah, The United Arab Emirates, Computers and Industrial Engineering
– volume: 161
  start-page: 337
  issue: 4
  year: 1992
  ident: 10.1016/j.cie.2025.111390_b0110
  article-title: The landscape of the traveling salesman problem
  publication-title: Physics Letters A
  doi: 10.1016/0375-9601(92)90557-3
– volume: 314
  start-page: 409
  issue: 2
  year: 2024
  ident: 10.1016/j.cie.2025.111390_b0030
  article-title: The flexible job shop scheduling problem: A review
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2023.05.017
– volume: 40
  start-page: 113
  issue: 1
  year: 1992
  ident: 10.1016/j.cie.2025.111390_b0135
  article-title: Job shop scheduling by simulated annealing
  publication-title: Operations Research
  doi: 10.1287/opre.40.1.113
– volume: 25
  year: 2025
  ident: 10.1016/j.cie.2025.111390_b0085
  article-title: Leader selection based Multi-Objective Flow Direction Algorithm (MOFDA): A novel approach for engineering design problems
  publication-title: Results in Engineering
  doi: 10.1016/j.rineng.2024.103670
– volume: 29
  start-page: 1368
  issue: 5
  year: 2024
  ident: 10.1016/j.cie.2025.111390_b0080
  article-title: Domain Knowledge Used in Meta-Heuristic Algorithms for the Job-Shop Scheduling Problem: Review and Analysis
  publication-title: Tsinghua Science and Technology
  doi: 10.26599/TST.2023.9010140
– volume: 34
  start-page: 3143
  issue: 10
  year: 2007
  ident: 10.1016/j.cie.2025.111390_b0105
  article-title: A review of metrics on permutations for search landscape analysis
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2005.11.022
– volume: 61
  start-page: 2147
  issue: 7
  year: 2023
  ident: 10.1016/j.cie.2025.111390_b0170
  article-title: A new neighbourhood structure for job shop scheduling problems
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2022.2060772
– volume: 34
  start-page: 3229
  issue: 11
  year: 2007
  ident: 10.1016/j.cie.2025.111390_b0190
  article-title: A tabu search algorithm with a new neighborhood structure for the job shop scheduling problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2005.12.002
– volume: 60
  year: 2024
  ident: 10.1016/j.cie.2025.111390_b0145
  article-title: A multi-disjunctive-graph model-based memetic algorithm for the distributed job shop scheduling problem
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2024.102401
– year: 2017
  ident: 10.1016/j.cie.2025.111390_b0020
– volume: 89
  year: 2024
  ident: 10.1016/j.cie.2025.111390_b0180
  article-title: Tabu search based on novel neighborhood structures for solving job shop scheduling problem integrating finite transportation resources
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2024.102782
– volume: 462
  year: 2025
  ident: 10.1016/j.cie.2025.111390_b0140
  article-title: Hybridizing remora and aquila optimizer with dynamic oppositional learning for structural engineering design problems
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2024.116475
– volume: 36
  start-page: 87
  issue: 1
  year: 2023
  ident: 10.1016/j.cie.2025.111390_b0060
  article-title: Necessary and sufficient conditions for feasible neighbourhood solutions in the local search of the job-shop scheduling problem
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.1186/s10033-023-00911-8
– volume: 434
  year: 2025
  ident: 10.1016/j.cie.2025.111390_b0015
  article-title: Integrating Differential Evolution into Gazelle Optimization for advanced global optimization and engineering applications
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2024.117588
– volume: 53
  start-page: 154
  year: 2015
  ident: 10.1016/j.cie.2025.111390_b0095
  article-title: A tabu search/path relinking algorithm to solve the job shop scheduling problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2014.08.006
– start-page: 136
  year: 2014
  ident: 10.1016/j.cie.2025.111390_b0035
– volume: 58
  start-page: 69
  issue: 3
  year: 2025
  ident: 10.1016/j.cie.2025.111390_b0090
  article-title: Enhanced crayfish optimization algorithm with differential evolution’s mutation and crossover strategies for global optimization and engineering applications
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-024-11069-7
– volume: 35
  start-page: 282
  issue: 1
  year: 2008
  ident: 10.1016/j.cie.2025.111390_b0195
  article-title: A very fast TS/SA algorithm for the job shop scheduling problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2006.02.024
– volume: 1–33
  year: 2024
  ident: 10.1016/j.cie.2025.111390_b0005
  article-title: A modified memetic algorithm with multi-operation precise joint movement neighbourhood structure for the assembly job shop scheduling problem
  publication-title: International Journal of Production Research
– volume: 71
  start-page: 82
  year: 2023
  ident: 10.1016/j.cie.2025.111390_b0165
  article-title: A hybrid genetic tabu search algorithm for distributed flexible job shop scheduling problems
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2023.09.002
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.cie.2025.111390_b0160
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– year: 2022
  ident: 10.1016/j.cie.2025.111390_b0100
– volume: 213
  year: 2023
  ident: 10.1016/j.cie.2025.111390_b0055
  article-title: Efficient multi-objective meta-heuristic algorithms for energy-aware non-permutation flow-shop scheduling problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.119077
– volume: 151
  year: 2023
  ident: 10.1016/j.cie.2025.111390_b0155
  article-title: Solving non-permutation flow-shop scheduling problem via a novel deep reinforcement learning approach
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2022.106095
– volume: 306
  start-page: 1140
  issue: 3
  year: 2023
  ident: 10.1016/j.cie.2025.111390_b0045
  article-title: A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2022.09.006
– volume: 521
  start-page: 476
  issue: 7553
  year: 2015
  ident: 10.1016/j.cie.2025.111390_b0040
  article-title: From evolutionary computation to the evolution of things
  publication-title: Nature
  doi: 10.1038/nature14544
– volume: 155
  year: 2023
  ident: 10.1016/j.cie.2025.111390_b0130
  article-title: A MIP model and a hybrid genetic algorithm for flexible job-shop scheduling problem with job-splitting
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2023.106222
– volume: 1–21
  year: 2024
  ident: 10.1016/j.cie.2025.111390_b0075
  article-title: A uniform sampling method for permutation space
  publication-title: Annals of Operations Research
– volume: 64
  start-page: 278
  issue: 2
  year: 1993
  ident: 10.1016/j.cie.2025.111390_b0115
  article-title: Benchmarks for basic scheduling problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(93)90182-M
– volume: 39
  start-page: 2291
  issue: 10
  year: 2012
  ident: 10.1016/j.cie.2025.111390_b0150
  article-title: A new hybrid genetic algorithm for job shop scheduling problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2011.12.005
SSID ssj0004591
Score 2.456116
Snippet •JSP problem domains are formed due to different constraints or optimization objectives.•It is very valuable to design optimization algorithms with...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 111390
SubjectTerms Fitness landscape analysis
Generalized job-shop scheduling problems
Hybrid optimization algorithm
Title A hybrid optimization algorithm based on fitness landscape analysis for generalized job-shop scheduling problems
URI https://dx.doi.org/10.1016/j.cie.2025.111390
Volume 208
WOSCitedRecordID wos001539066200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004591
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQd64FFAlALygRNRVnlsEvu4qooAVRVIBe0tsh1v16s2WW2yVds_wN9mHNtJKFSiBy5RNHGcKPNp5rMzD4TeUwHLCplxPwVv4YO_5T6lMvJTIYiEa9m0rVPw4zg7OSHzOf06Gv10uTCX51lZkqsruv6vqgYZKFunzt5D3d2kIIBzUDocQe1w_CfFz7zltU7D8iqwBhc2zdJj52fVRjXLC0_7rUL_I1ioprVzbbavjoPymKtQomMPz0xBanUDo1cV9-tltfZgLQy-yaawt61o6iG9dT0i6hZRqm8LIvuyh13Ez1bZTYEuKKgVzFV5ve0GscoMYv2Nx2qrZd_UklXDTYso6cLf-mStwNfkb2iIo4AMTCkY4dh0Ev3DypsNh9UErN9Ezz7px_5eUfuWp-viD11o2yqHKXI9RW6meIB2oiyhZIx2Zp-P5l8GhedN80X33u4HeRsqeOs9_k5xBrTl9Cl6bNcbeGZw8gyNZLmHnti1B7aWvd5Du4PClM_ReoYNiPAQRLgDEW5BhEFkQYQ7EGEHIgwgwgMQYQci3IMIOxC9QN8_Hp0efvJtbw5fRHTa-CHlghZRwGJSJDIVhBcc6J6cZgwoIYlBnFIRhnQBliAOZAo0O9WJzwnlieSL-CUal1UpXyGckpBp3s3FgoOtAL4rZcBCIgPKaCqKffTBfc58bUqw5HcqcB9N3QfPLYc03DAH8Nx92-v7POMAPeox_QaNm81WvkUPxWWj6s07i5xfB5GUFA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+optimization+algorithm+based+on+fitness+landscape+analysis+for+generalized+job-shop+scheduling+problems&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Gui%2C+Lin&rft.au=Li%2C+Xinyu&rft.au=Gao%2C+Liang&rft.au=Liu%2C+Qihao&rft.date=2025-10-01&rft.issn=0360-8352&rft.volume=208&rft.spage=111390&rft_id=info:doi/10.1016%2Fj.cie.2025.111390&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2025_111390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon