A hybrid optimization algorithm based on fitness landscape analysis for generalized job-shop scheduling problems
•JSP problem domains are formed due to different constraints or optimization objectives.•It is very valuable to design optimization algorithms with generalization for JSP domains.•Fitness landscape analysis can provide a basis for the design of optimization algorithms. Due to the diverse constraints...
Uložené v:
| Vydané v: | Computers & industrial engineering Ročník 208; s. 111390 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.10.2025
|
| Predmet: | |
| ISSN: | 0360-8352 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •JSP problem domains are formed due to different constraints or optimization objectives.•It is very valuable to design optimization algorithms with generalization for JSP domains.•Fitness landscape analysis can provide a basis for the design of optimization algorithms.
Due to the diverse constraints and objectives inherent to job-shop scheduling problems (JSPs), this problem domain has emerged as a significant challenge. In existing research, the optimization algorithm must be tailored to specific production scenarios, which prolongs the development cycle and increases the cost. This paper proposes a hybrid optimization algorithm for addressing diverse JSPs within the problem domain (generalized JSPs) based on fitness landscape analysis. Firstly, a mathematical model of the generalized JSPs is constructed, and then the common features in different problems are obtained based on fitness landscape analysis. On this basis, this paper proposes a hybrid optimization algorithm and verifies it in three different JSPs. The superiority of the proposed algorithm is then verified in comparison with the existing best meta-heuristic algorithms for solving JSPs. |
|---|---|
| AbstractList | •JSP problem domains are formed due to different constraints or optimization objectives.•It is very valuable to design optimization algorithms with generalization for JSP domains.•Fitness landscape analysis can provide a basis for the design of optimization algorithms.
Due to the diverse constraints and objectives inherent to job-shop scheduling problems (JSPs), this problem domain has emerged as a significant challenge. In existing research, the optimization algorithm must be tailored to specific production scenarios, which prolongs the development cycle and increases the cost. This paper proposes a hybrid optimization algorithm for addressing diverse JSPs within the problem domain (generalized JSPs) based on fitness landscape analysis. Firstly, a mathematical model of the generalized JSPs is constructed, and then the common features in different problems are obtained based on fitness landscape analysis. On this basis, this paper proposes a hybrid optimization algorithm and verifies it in three different JSPs. The superiority of the proposed algorithm is then verified in comparison with the existing best meta-heuristic algorithms for solving JSPs. |
| ArticleNumber | 111390 |
| Author | Gao, Liang Li, Xinyu Liu, Qihao Gui, Lin |
| Author_xml | – sequence: 1 givenname: Lin surname: Gui fullname: Gui, Lin organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 2 givenname: Xinyu surname: Li fullname: Li, Xinyu organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 3 givenname: Liang surname: Gao fullname: Gao, Liang email: gaoliang@mail.hust.edu.cn organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 4 givenname: Qihao surname: Liu fullname: Liu, Qihao organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China |
| BookMark | eNp9kMtqwzAQRbVIoUnaD-hOP2BXsi3HoqsQ-oJAN-1a6DGOZWzJSG7B-foqpOuuBmbuGWbOBq2cd4DQAyU5JbR-7HNtIS9IwXJKacnJCq1JWZOsKVlxizYx9oSQinG6RtMed4sK1mA_zXa0Zzlb77AcTj7YuRuxkhHS0OHWzg5ixIN0Jmo5AZZODku0Ebc-4BM4CHKw55Tuvcpi5yccdQfme7DuhKfg1QBjvEM3rRwi3P_VLfp6ef48vGXHj9f3w_6Y6YJXc0a50twURJaNYVDrRhlFigqqnawoa8rUrrmmlLcUdiWBui7Sh2zHGVcMVFtuEb3u1cHHGKAVU7CjDIugRFw0iV4kTeKiSVw1JebpykA67MdCEDFFnAZjA-hZGG__oX8BMrV17Q |
| Cites_doi | 10.1049/cim2.12049 10.1016/j.cie.2020.106778 10.1109/TASE.2024.3356255 10.1016/j.swevo.2024.101485 10.1016/j.cie.2022.108205 10.1287/mnsc.44.2.262 10.1016/0375-9601(92)90557-3 10.1016/j.ejor.2023.05.017 10.1287/opre.40.1.113 10.1016/j.rineng.2024.103670 10.26599/TST.2023.9010140 10.1016/j.cor.2005.11.022 10.1080/00207543.2022.2060772 10.1016/j.cor.2005.12.002 10.1016/j.aei.2024.102401 10.1016/j.rcim.2024.102782 10.1016/j.cam.2024.116475 10.1186/s10033-023-00911-8 10.1016/j.cma.2024.117588 10.1016/j.cor.2014.08.006 10.1007/s10462-024-11069-7 10.1016/j.cor.2006.02.024 10.1016/j.jmsy.2023.09.002 10.1109/4235.585893 10.1016/j.eswa.2022.119077 10.1016/j.cor.2022.106095 10.1016/j.ejor.2022.09.006 10.1038/nature14544 10.1016/j.cor.2023.106222 10.1016/0377-2217(93)90182-M 10.1016/j.cor.2011.12.005 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cie.2025.111390 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| ExternalDocumentID | 10_1016_j_cie_2025_111390 S0360835225005364 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AAEDT AAEDW AAFWJ AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYWO ABAOU ABDPE ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFO ACGFS ACLOT ACNCT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADGUI ADMUD ADNMO ADRHT ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- ~HD 9DU AAYXX CITATION |
| ID | FETCH-LOGICAL-c294t-19bc9d20a38d5e6c8bdb024e47a4158338d69c119f1e730e66236057959b5ebf3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001539066200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-8352 |
| IngestDate | Sat Nov 29 07:34:16 EST 2025 Sat Oct 04 17:00:49 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Generalized job-shop scheduling problems Hybrid optimization algorithm Fitness landscape analysis |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c294t-19bc9d20a38d5e6c8bdb024e47a4158338d69c119f1e730e66236057959b5ebf3 |
| OpenAccessLink | https://doi.org/10.1016/j.cie.2025.111390 |
| ParticipantIDs | crossref_primary_10_1016_j_cie_2025_111390 elsevier_sciencedirect_doi_10_1016_j_cie_2025_111390 |
| PublicationCentury | 2000 |
| PublicationDate | October 2025 2025-10-00 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: October 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Dauzère-Pérès, Ding, Shen, Tamssaouet (b0030) 2024; 314 Xie, Li, Gao, Gui (b0175) 2022; 169 Yao, Gui, Li, Gao (b0180) 2024; 89 Chen, Yang, Li, Wang (b0025) 2020; 149 Gui, Li, Zhang, Gao (b0070) 2023; 2023 Talbi (b0120) 2009 Van Laarhoven, Aarts, Lenstra (b0135) 1992; 40 Eiben, Smith (b0040) 2015; 521 Ba, Yuan, Liu (b0005) 2024; 1–33 Varshney, Kumar, Abualigah (b0140) 2025; 462 Bozorg-Haddad, Solgi, Loáiciga (b0020) 2017 Wang, Li, Gao, Li (b0145) 2024; 60 Gui, Li, Gao, Xie (b0065) 2022; 4 Xie, Li, Gao, Gui (b0165) 2023; 71 Schiavinotto, Stützle (b0105) 2007; 34 Gui, Li, Gao, Wang (b0060) 2023; 36 Gui, Li, Zhang, Gao (b0075) 2024; 1–21 Stadler, Schnabl (b0110) 1992; 161 Maiti, Biswas, Ezugwu, Bera, Alzahrani, Alblehai, Abualigah (b0090) 2025; 58 Zhang, Li, Rao, Guan (b0195) 2008; 35 Biswas, Singh, Maiti, Ezugwu, Saleem, Smerat, Bera (b0015) 2025; 434 Wolpert, Macready (b0160) 1997; 1 Tian, Zhang, Fan, Li, Gao (b0125) 2024; 85 Khodadadi, Ehteram, Karami, Nadimi-Shahraki, Abualigah, Mirjalili (b0085) 2025; 25 Taillard (b0115) 1993; 64 Wang (b0150) 2012; 39 Davis (b0035) 2014 Zhang, Li, Guan, Rao (b0190) 2007; 34 Xie, Li, Gao, Gui (b0170) 2023; 61 Fontes, Homayouni, Gonçalves (b0045) 2023; 306 Peng, Lü, Cheng (b0095) 2015; 53 Goli, Ala, Hajiaghaei-Keshteli (b0055) 2023; 213 Gui, Li, Zhang, Gao (b0080) 2024; 29 Pinedo (b0100) 2022 Yao, Liu, Fu, Li, Yu, Gao, Zhou (b0185) 2025; 22 Balas, Vazacopoulos (b0010) 1998; 44 Tutumlu, Saraç (b0130) 2023; 155 Gendreau, Potvin (b0050) 2010 Wang, Cai, Li, Yang, Zhao, Xie (b0155) 2023; 151 Schiavinotto (10.1016/j.cie.2025.111390_b0105) 2007; 34 Zhang (10.1016/j.cie.2025.111390_b0190) 2007; 34 Zhang (10.1016/j.cie.2025.111390_b0195) 2008; 35 Biswas (10.1016/j.cie.2025.111390_b0015) 2025; 434 Dauzère-Pérès (10.1016/j.cie.2025.111390_b0030) 2024; 314 Davis (10.1016/j.cie.2025.111390_b0035) 2014 Yao (10.1016/j.cie.2025.111390_b0180) 2024; 89 Tian (10.1016/j.cie.2025.111390_b0125) 2024; 85 Stadler (10.1016/j.cie.2025.111390_b0110) 1992; 161 Khodadadi (10.1016/j.cie.2025.111390_b0085) 2025; 25 Yao (10.1016/j.cie.2025.111390_b0185) 2025; 22 Eiben (10.1016/j.cie.2025.111390_b0040) 2015; 521 Tutumlu (10.1016/j.cie.2025.111390_b0130) 2023; 155 Pinedo (10.1016/j.cie.2025.111390_b0100) 2022 Gui (10.1016/j.cie.2025.111390_b0065) 2022; 4 Bozorg-Haddad (10.1016/j.cie.2025.111390_b0020) 2017 Gui (10.1016/j.cie.2025.111390_b0080) 2024; 29 Maiti (10.1016/j.cie.2025.111390_b0090) 2025; 58 Varshney (10.1016/j.cie.2025.111390_b0140) 2025; 462 Wolpert (10.1016/j.cie.2025.111390_b0160) 1997; 1 Xie (10.1016/j.cie.2025.111390_b0175) 2022; 169 Gendreau (10.1016/j.cie.2025.111390_b0050) 2010 Gui (10.1016/j.cie.2025.111390_b0075) 2024; 1–21 Wang (10.1016/j.cie.2025.111390_b0145) 2024; 60 Wang (10.1016/j.cie.2025.111390_b0150) 2012; 39 Goli (10.1016/j.cie.2025.111390_b0055) 2023; 213 Peng (10.1016/j.cie.2025.111390_b0095) 2015; 53 Chen (10.1016/j.cie.2025.111390_b0025) 2020; 149 Gui (10.1016/j.cie.2025.111390_b0070) 2023; 2023 Van Laarhoven (10.1016/j.cie.2025.111390_b0135) 1992; 40 Wang (10.1016/j.cie.2025.111390_b0155) 2023; 151 Ba (10.1016/j.cie.2025.111390_b0005) 2024; 1–33 Xie (10.1016/j.cie.2025.111390_b0170) 2023; 61 Talbi (10.1016/j.cie.2025.111390_b0120) 2009 Xie (10.1016/j.cie.2025.111390_b0165) 2023; 71 Taillard (10.1016/j.cie.2025.111390_b0115) 1993; 64 Gui (10.1016/j.cie.2025.111390_b0060) 2023; 36 Balas (10.1016/j.cie.2025.111390_b0010) 1998; 44 Fontes (10.1016/j.cie.2025.111390_b0045) 2023; 306 |
| References_xml | – volume: 521 start-page: 476 year: 2015 end-page: 482 ident: b0040 article-title: From evolutionary computation to the evolution of things – volume: 71 start-page: 82 year: 2023 end-page: 94 ident: b0165 article-title: A hybrid genetic tabu search algorithm for distributed flexible job shop scheduling problems – volume: 213 year: 2023 ident: b0055 article-title: Efficient multi-objective meta-heuristic algorithms for energy-aware non-permutation flow-shop scheduling problem – volume: 169 year: 2022 ident: b0175 article-title: A hybrid algorithm with a new neighborhood structure for job shop scheduling problems – volume: 89 year: 2024 ident: b0180 article-title: Tabu search based on novel neighborhood structures for solving job shop scheduling problem integrating finite transportation resources – volume: 434 year: 2025 ident: b0015 article-title: Integrating Differential Evolution into Gazelle Optimization for advanced global optimization and engineering applications publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 306 start-page: 1140 year: 2023 end-page: 1157 ident: b0045 article-title: A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources – volume: 151 year: 2023 ident: b0155 article-title: Solving non-permutation flow-shop scheduling problem via a novel deep reinforcement learning approach – volume: 155 year: 2023 ident: b0130 article-title: A MIP model and a hybrid genetic algorithm for flexible job-shop scheduling problem with job-splitting – volume: 39 start-page: 2291 year: 2012 end-page: 2299 ident: b0150 article-title: A new hybrid genetic algorithm for job shop scheduling problem – volume: 35 start-page: 282 year: 2008 end-page: 294 ident: b0195 article-title: A very fast TS/SA algorithm for the job shop scheduling problem – volume: 2023 start-page: 532 year: 2023 end-page: 541 ident: b0070 article-title: A parallel tabu search algorithm based on uniform sampling for generalized job-shop scheduling problems publication-title: Proceedings of International Conference on Computers and Industrial Engineering, Sharjah, The United Arab Emirates, Computers and Industrial Engineering – volume: 60 year: 2024 ident: b0145 article-title: A multi-disjunctive-graph model-based memetic algorithm for the distributed job shop scheduling problem – volume: 53 start-page: 154 year: 2015 end-page: 164 ident: b0095 article-title: A tabu search/path relinking algorithm to solve the job shop scheduling problem – volume: 25 year: 2025 ident: b0085 article-title: Leader selection based Multi-Objective Flow Direction Algorithm (MOFDA): A novel approach for engineering design problems publication-title: Results in Engineering – volume: 314 start-page: 409 year: 2024 end-page: 432 ident: b0030 article-title: The flexible job shop scheduling problem: A review – volume: 1–21 year: 2024 ident: b0075 article-title: A uniform sampling method for permutation space publication-title: Annals of Operations Research – year: 2022 ident: b0100 article-title: Scheduling: Theory, Algorithms, and Systems – volume: 34 start-page: 3229 year: 2007 end-page: 3242 ident: b0190 article-title: A tabu search algorithm with a new neighborhood structure for the job shop scheduling problem – volume: 85 year: 2024 ident: b0125 article-title: A genetic algorithm with critical path-based variable neighborhood search for distributed assembly job shop scheduling problem – volume: 36 start-page: 87 year: 2023 ident: b0060 article-title: Necessary and sufficient conditions for feasible neighbourhood solutions in the local search of the job-shop scheduling problem – year: 2017 ident: b0020 article-title: Metaheuristic and evolutionary algorithms for engineering optimization – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b0160 article-title: No free lunch theorems for optimization – volume: 64 start-page: 278 year: 1993 end-page: 285 ident: b0115 article-title: Benchmarks for basic scheduling problems – volume: 149 year: 2020 ident: b0025 article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem – volume: 34 start-page: 3143 year: 2007 end-page: 3153 ident: b0105 article-title: A review of metrics on permutations for search landscape analysis – volume: 4 start-page: 157 year: 2022 end-page: 165 ident: b0065 article-title: An approximate evaluation method for neighbourhood solutions in job shop scheduling problem – volume: 462 year: 2025 ident: b0140 article-title: Hybridizing remora and aquila optimizer with dynamic oppositional learning for structural engineering design problems publication-title: Journal of Computational and Applied Mathematics – volume: 61 start-page: 2147 year: 2023 end-page: 2161 ident: b0170 article-title: A new neighbourhood structure for job shop scheduling problems publication-title: h – volume: 161 start-page: 337 year: 1992 end-page: 344 ident: b0110 article-title: The landscape of the traveling salesman problem – volume: 29 start-page: 1368 year: 2024 end-page: 1389 ident: b0080 article-title: Domain Knowledge Used in Meta-Heuristic Algorithms for the Job-Shop Scheduling Problem: Review and Analysis – year: 2010 ident: b0050 article-title: 2010 – volume: 44 start-page: 262 year: 1998 end-page: 275 ident: b0010 article-title: Guided local search with shifting bottleneck for job shop scheduling – start-page: 136 year: 2014 end-page: 140 ident: b0035 publication-title: January). Job shop scheduling with genetic algorithms – volume: 1–33 year: 2024 ident: b0005 article-title: A modified memetic algorithm with multi-operation precise joint movement neighbourhood structure for the assembly job shop scheduling problem publication-title: International – volume: 40 start-page: 113 year: 1992 end-page: 125 ident: b0135 article-title: Job shop scheduling by simulated annealing – volume: 58 start-page: 69 year: 2025 ident: b0090 article-title: Enhanced crayfish optimization algorithm with differential evolution’s mutation and crossover strategies for global optimization and engineering applications publication-title: Artificial Intelligence Review – volume: 22 start-page: 7449 year: 2025 end-page: 7462 ident: b0185 article-title: A novel mathematical model for the flexible job-shop scheduling problem with limited automated guided vehicles – year: 2009 ident: b0120 article-title: Metaheuristics: From design to implementation – volume: 4 start-page: 157 issue: 3 year: 2022 ident: 10.1016/j.cie.2025.111390_b0065 article-title: An approximate evaluation method for neighbourhood solutions in job shop scheduling problem publication-title: IET Collaborative Intelligent Manufacturing doi: 10.1049/cim2.12049 – year: 2009 ident: 10.1016/j.cie.2025.111390_b0120 – volume: 149 year: 2020 ident: 10.1016/j.cie.2025.111390_b0025 article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.106778 – year: 2010 ident: 10.1016/j.cie.2025.111390_b0050 – volume: 22 start-page: 7449 year: 2025 ident: 10.1016/j.cie.2025.111390_b0185 article-title: A novel mathematical model for the flexible job-shop scheduling problem with limited automated guided vehicles publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2024.3356255 – volume: 85 year: 2024 ident: 10.1016/j.cie.2025.111390_b0125 article-title: A genetic algorithm with critical path-based variable neighborhood search for distributed assembly job shop scheduling problem publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2024.101485 – volume: 169 year: 2022 ident: 10.1016/j.cie.2025.111390_b0175 article-title: A hybrid algorithm with a new neighborhood structure for job shop scheduling problems publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2022.108205 – volume: 44 start-page: 262 issue: 2 year: 1998 ident: 10.1016/j.cie.2025.111390_b0010 article-title: Guided local search with shifting bottleneck for job shop scheduling publication-title: Management Science doi: 10.1287/mnsc.44.2.262 – volume: 2023 start-page: 532 year: 2023 ident: 10.1016/j.cie.2025.111390_b0070 article-title: A parallel tabu search algorithm based on uniform sampling for generalized job-shop scheduling problems publication-title: Proceedings of International Conference on Computers and Industrial Engineering, Sharjah, The United Arab Emirates, Computers and Industrial Engineering – volume: 161 start-page: 337 issue: 4 year: 1992 ident: 10.1016/j.cie.2025.111390_b0110 article-title: The landscape of the traveling salesman problem publication-title: Physics Letters A doi: 10.1016/0375-9601(92)90557-3 – volume: 314 start-page: 409 issue: 2 year: 2024 ident: 10.1016/j.cie.2025.111390_b0030 article-title: The flexible job shop scheduling problem: A review publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2023.05.017 – volume: 40 start-page: 113 issue: 1 year: 1992 ident: 10.1016/j.cie.2025.111390_b0135 article-title: Job shop scheduling by simulated annealing publication-title: Operations Research doi: 10.1287/opre.40.1.113 – volume: 25 year: 2025 ident: 10.1016/j.cie.2025.111390_b0085 article-title: Leader selection based Multi-Objective Flow Direction Algorithm (MOFDA): A novel approach for engineering design problems publication-title: Results in Engineering doi: 10.1016/j.rineng.2024.103670 – volume: 29 start-page: 1368 issue: 5 year: 2024 ident: 10.1016/j.cie.2025.111390_b0080 article-title: Domain Knowledge Used in Meta-Heuristic Algorithms for the Job-Shop Scheduling Problem: Review and Analysis publication-title: Tsinghua Science and Technology doi: 10.26599/TST.2023.9010140 – volume: 34 start-page: 3143 issue: 10 year: 2007 ident: 10.1016/j.cie.2025.111390_b0105 article-title: A review of metrics on permutations for search landscape analysis publication-title: Computers & Operations Research doi: 10.1016/j.cor.2005.11.022 – volume: 61 start-page: 2147 issue: 7 year: 2023 ident: 10.1016/j.cie.2025.111390_b0170 article-title: A new neighbourhood structure for job shop scheduling problems publication-title: International Journal of Production Research doi: 10.1080/00207543.2022.2060772 – volume: 34 start-page: 3229 issue: 11 year: 2007 ident: 10.1016/j.cie.2025.111390_b0190 article-title: A tabu search algorithm with a new neighborhood structure for the job shop scheduling problem publication-title: Computers & Operations Research doi: 10.1016/j.cor.2005.12.002 – volume: 60 year: 2024 ident: 10.1016/j.cie.2025.111390_b0145 article-title: A multi-disjunctive-graph model-based memetic algorithm for the distributed job shop scheduling problem publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2024.102401 – year: 2017 ident: 10.1016/j.cie.2025.111390_b0020 – volume: 89 year: 2024 ident: 10.1016/j.cie.2025.111390_b0180 article-title: Tabu search based on novel neighborhood structures for solving job shop scheduling problem integrating finite transportation resources publication-title: Robotics and Computer-Integrated Manufacturing doi: 10.1016/j.rcim.2024.102782 – volume: 462 year: 2025 ident: 10.1016/j.cie.2025.111390_b0140 article-title: Hybridizing remora and aquila optimizer with dynamic oppositional learning for structural engineering design problems publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/j.cam.2024.116475 – volume: 36 start-page: 87 issue: 1 year: 2023 ident: 10.1016/j.cie.2025.111390_b0060 article-title: Necessary and sufficient conditions for feasible neighbourhood solutions in the local search of the job-shop scheduling problem publication-title: Chinese Journal of Mechanical Engineering doi: 10.1186/s10033-023-00911-8 – volume: 434 year: 2025 ident: 10.1016/j.cie.2025.111390_b0015 article-title: Integrating Differential Evolution into Gazelle Optimization for advanced global optimization and engineering applications publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2024.117588 – volume: 53 start-page: 154 year: 2015 ident: 10.1016/j.cie.2025.111390_b0095 article-title: A tabu search/path relinking algorithm to solve the job shop scheduling problem publication-title: Computers & Operations Research doi: 10.1016/j.cor.2014.08.006 – start-page: 136 year: 2014 ident: 10.1016/j.cie.2025.111390_b0035 – volume: 58 start-page: 69 issue: 3 year: 2025 ident: 10.1016/j.cie.2025.111390_b0090 article-title: Enhanced crayfish optimization algorithm with differential evolution’s mutation and crossover strategies for global optimization and engineering applications publication-title: Artificial Intelligence Review doi: 10.1007/s10462-024-11069-7 – volume: 35 start-page: 282 issue: 1 year: 2008 ident: 10.1016/j.cie.2025.111390_b0195 article-title: A very fast TS/SA algorithm for the job shop scheduling problem publication-title: Computers & Operations Research doi: 10.1016/j.cor.2006.02.024 – volume: 1–33 year: 2024 ident: 10.1016/j.cie.2025.111390_b0005 article-title: A modified memetic algorithm with multi-operation precise joint movement neighbourhood structure for the assembly job shop scheduling problem publication-title: International Journal of Production Research – volume: 71 start-page: 82 year: 2023 ident: 10.1016/j.cie.2025.111390_b0165 article-title: A hybrid genetic tabu search algorithm for distributed flexible job shop scheduling problems publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2023.09.002 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.cie.2025.111390_b0160 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – year: 2022 ident: 10.1016/j.cie.2025.111390_b0100 – volume: 213 year: 2023 ident: 10.1016/j.cie.2025.111390_b0055 article-title: Efficient multi-objective meta-heuristic algorithms for energy-aware non-permutation flow-shop scheduling problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.119077 – volume: 151 year: 2023 ident: 10.1016/j.cie.2025.111390_b0155 article-title: Solving non-permutation flow-shop scheduling problem via a novel deep reinforcement learning approach publication-title: Computers & Operations Research doi: 10.1016/j.cor.2022.106095 – volume: 306 start-page: 1140 issue: 3 year: 2023 ident: 10.1016/j.cie.2025.111390_b0045 article-title: A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2022.09.006 – volume: 521 start-page: 476 issue: 7553 year: 2015 ident: 10.1016/j.cie.2025.111390_b0040 article-title: From evolutionary computation to the evolution of things publication-title: Nature doi: 10.1038/nature14544 – volume: 155 year: 2023 ident: 10.1016/j.cie.2025.111390_b0130 article-title: A MIP model and a hybrid genetic algorithm for flexible job-shop scheduling problem with job-splitting publication-title: Computers & Operations Research doi: 10.1016/j.cor.2023.106222 – volume: 1–21 year: 2024 ident: 10.1016/j.cie.2025.111390_b0075 article-title: A uniform sampling method for permutation space publication-title: Annals of Operations Research – volume: 64 start-page: 278 issue: 2 year: 1993 ident: 10.1016/j.cie.2025.111390_b0115 article-title: Benchmarks for basic scheduling problems publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(93)90182-M – volume: 39 start-page: 2291 issue: 10 year: 2012 ident: 10.1016/j.cie.2025.111390_b0150 article-title: A new hybrid genetic algorithm for job shop scheduling problem publication-title: Computers & Operations Research doi: 10.1016/j.cor.2011.12.005 |
| SSID | ssj0004591 |
| Score | 2.456116 |
| Snippet | •JSP problem domains are formed due to different constraints or optimization objectives.•It is very valuable to design optimization algorithms with... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 111390 |
| SubjectTerms | Fitness landscape analysis Generalized job-shop scheduling problems Hybrid optimization algorithm |
| Title | A hybrid optimization algorithm based on fitness landscape analysis for generalized job-shop scheduling problems |
| URI | https://dx.doi.org/10.1016/j.cie.2025.111390 |
| Volume | 208 |
| WOSCitedRecordID | wos001539066200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-8352 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004591 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQd64FFAlALygRNRVnlsEvu4qooAVRVIBe0tsh1v16s2WW2yVds_wN9mHNtJKFSiBy5RNHGcKPNp5rMzD4TeUwHLCplxPwVv4YO_5T6lMvJTIYiEa9m0rVPw4zg7OSHzOf06Gv10uTCX51lZkqsruv6vqgYZKFunzt5D3d2kIIBzUDocQe1w_CfFz7zltU7D8iqwBhc2zdJj52fVRjXLC0_7rUL_I1ioprVzbbavjoPymKtQomMPz0xBanUDo1cV9-tltfZgLQy-yaawt61o6iG9dT0i6hZRqm8LIvuyh13Ez1bZTYEuKKgVzFV5ve0GscoMYv2Nx2qrZd_UklXDTYso6cLf-mStwNfkb2iIo4AMTCkY4dh0Ev3DypsNh9UErN9Ezz7px_5eUfuWp-viD11o2yqHKXI9RW6meIB2oiyhZIx2Zp-P5l8GhedN80X33u4HeRsqeOs9_k5xBrTl9Cl6bNcbeGZw8gyNZLmHnti1B7aWvd5Du4PClM_ReoYNiPAQRLgDEW5BhEFkQYQ7EGEHIgwgwgMQYQci3IMIOxC9QN8_Hp0efvJtbw5fRHTa-CHlghZRwGJSJDIVhBcc6J6cZgwoIYlBnFIRhnQBliAOZAo0O9WJzwnlieSL-CUal1UpXyGckpBp3s3FgoOtAL4rZcBCIgPKaCqKffTBfc58bUqw5HcqcB9N3QfPLYc03DAH8Nx92-v7POMAPeox_QaNm81WvkUPxWWj6s07i5xfB5GUFA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+optimization+algorithm+based+on+fitness+landscape+analysis+for+generalized+job-shop+scheduling+problems&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Gui%2C+Lin&rft.au=Li%2C+Xinyu&rft.au=Gao%2C+Liang&rft.au=Liu%2C+Qihao&rft.date=2025-10-01&rft.issn=0360-8352&rft.volume=208&rft.spage=111390&rft_id=info:doi/10.1016%2Fj.cie.2025.111390&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2025_111390 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |