Fault Diagnosis of Rolling Bearing Using Convolutional Denoising Autoencoder and Siamese Neural Network With Small Sample

Bearing fault diagnosis is critical for ensuring mechanical reliability and operational safety. Industrial Internet of Things (IIoT) sensors provide real-time monitoring data, advancing research in data-driven approaches to bearing fault diagnosis. However, current studies overlook two key challenge...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal Vol. 12; no. 5; pp. 5233 - 5244
Main Authors: Zhao, Xufeng, Chen, Ying, Yang, Mengshu, Xiang, Jiawei
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.03.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2327-4662, 2327-4662
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Bearing fault diagnosis is critical for ensuring mechanical reliability and operational safety. Industrial Internet of Things (IIoT) sensors provide real-time monitoring data, advancing research in data-driven approaches to bearing fault diagnosis. However, current studies overlook two key challenges: 1) susceptibility to noise interference during fault signal acquisition and 2) the scarcity of fault data for effective diagnostic tasks in practical scenarios. To address these issues, this article proposes a novel method termed convolutional denoising autoencoder and siamese neural network (CDAE-SNN) for fault diagnosis in rolling bearings. This method is designed to be robust against noise and applicable in scenarios with limited data. Initially, Gaussian white noise is added to raw signals to simulate noisy signals encountered in real operating conditions. Subsequently, a convolutional denoising autoencoder (DAE) is constructed and optimized. The encoder in CDAE compresses feature information from samples into a lower dimensional space, while the decoder reconstructs signals to mitigate noise effects. Denoised signal sample pairs are then fed into a 2-D convolutional neural network-based siamese network to generate embedding vectors. Fault classification of rolling bearings is performed based on similarity metrics between sample pairs. Experimental results confirm the enhanced diagnostic accuracy of our proposed model across various signal-to-noise ratios and sample sizes. Furthermore, the model exhibits superior performance in classifying faults across diverse proportion of new categories.
AbstractList Bearing fault diagnosis is critical for ensuring mechanical reliability and operational safety. Industrial Internet of Things (IIoT) sensors provide real-time monitoring data, advancing research in data-driven approaches to bearing fault diagnosis. However, current studies overlook two key challenges: 1) susceptibility to noise interference during fault signal acquisition and 2) the scarcity of fault data for effective diagnostic tasks in practical scenarios. To address these issues, this article proposes a novel method termed convolutional denoising autoencoder and siamese neural network (CDAE-SNN) for fault diagnosis in rolling bearings. This method is designed to be robust against noise and applicable in scenarios with limited data. Initially, Gaussian white noise is added to raw signals to simulate noisy signals encountered in real operating conditions. Subsequently, a convolutional denoising autoencoder (DAE) is constructed and optimized. The encoder in CDAE compresses feature information from samples into a lower dimensional space, while the decoder reconstructs signals to mitigate noise effects. Denoised signal sample pairs are then fed into a 2-D convolutional neural network-based siamese network to generate embedding vectors. Fault classification of rolling bearings is performed based on similarity metrics between sample pairs. Experimental results confirm the enhanced diagnostic accuracy of our proposed model across various signal-to-noise ratios and sample sizes. Furthermore, the model exhibits superior performance in classifying faults across diverse proportion of new categories.
Author Xiang, Jiawei
Yang, Mengshu
Zhao, Xufeng
Chen, Ying
Author_xml – sequence: 1
  givenname: Xufeng
  orcidid: 0000-0002-9423-5366
  surname: Zhao
  fullname: Zhao, Xufeng
  email: zx.peak@outlook.com
  organization: College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 2
  givenname: Ying
  surname: Chen
  fullname: Chen, Ying
  email: yingchen@nuaa.edu.cn
  organization: College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 3
  givenname: Mengshu
  orcidid: 0009-0008-6093-3503
  surname: Yang
  fullname: Yang, Mengshu
  email: yms8922@163.com
  organization: College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 4
  givenname: Jiawei
  orcidid: 0000-0003-4028-985X
  surname: Xiang
  fullname: Xiang, Jiawei
  email: jwxiang@wzu.edu.cn
  organization: College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, China
BookMark eNp9kE1PAyEQhonRxM8fYOKBxHMrLBS6R61WaxpNbBuPGwrTilKowGr89-7aHowHOTCTyfNMMu8h2vXBA0KnlHQpJeXF_ehx2i1IwbuM92XZL3fQQcEK2eFCFLu_-n10ktIrIaTRerQUB-hrqGqX8bVVSx-STTgs8FNwzvolvgIV2zpL7T8I_iO4OtvglcPX4IP9mV_WOYDXwUDEyhs8sWoFCfAD1LEBHyB_hviGn21-wZOVcg5P1Grt4BjtLZRLcLKtR2g2vJkO7jrjx9vR4HLc0UXJc4cKYubKGFkuNPBSN48Wcq5pydicG-CGMGHmDSM4l0IXxFCietIYyrSSgh2h883edQzvNaRcvYY6NjekilFJuewzShpKbigdQ0oRFpW2WbXH5qisqyip2qirNuqqjbraRt2Y9I-5jnal4te_ztnGsQDwi5c9xnqCfQPeaY3m
CODEN IITJAU
CitedBy_id crossref_primary_10_1016_j_neucom_2025_131093
Cites_doi 10.1109/JSEN.2020.3030910
10.3390/s22093314
10.1109/JSEN.2024.3409768
10.1007/s11071-021-06393-4
10.1109/JIOT.2022.3168317
10.1016/j.ress.2023.109387
10.1109/CVPR.2006.100
10.1080/00207543.2022.2122621
10.1109/TII.2019.2943898
10.1016/j.ymssp.2017.08.002
10.1007/s10845-020-01579-w
10.1109/TR.2023.3328597
10.1088/1361-6501/ad57d9
10.1142/S0218539319500128
10.1109/JIOT.2024.3363837
10.1109/TII.2020.2968370
10.1145/3582688
10.1109/TIE.2016.2627020
10.1016/j.measurement.2016.04.007
10.1109/TIM.2024.3351254
10.1016/j.simpat.2022.102659
10.1109/TIM.2023.3293554
10.1109/JIOT.2024.3363610
10.3390/s17020425
10.1109/ACCESS.2019.2934233
10.1109/TMECH.2023.3267699
10.1109/JIOT.2020.3004452
10.1016/j.cie.2021.107451
10.1016/j.knosys.2022.109846
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2024.3487989
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 5244
ExternalDocumentID 10_1109_JIOT_2024_3487989
10753356
Genre orig-research
GrantInformation_xml – fundername: Aeronautical Science Foundation of China Aviation Academy
  grantid: 2022Z057052002
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 72471116; 52375116
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-160dbadd79fce49cccc127bc1933b4de4d036dbdba64476c20d10a57dd13ca763
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001433294700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Tue Sep 23 21:26:54 EDT 2025
Sat Nov 29 08:10:30 EST 2025
Tue Nov 18 21:25:26 EST 2025
Wed Aug 27 01:49:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-160dbadd79fce49cccc127bc1933b4de4d036dbdba64476c20d10a57dd13ca763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4028-985X
0000-0002-9423-5366
0009-0008-6093-3503
PQID 3171478310
PQPubID 2040421
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_JIOT_2024_3487989
crossref_primary_10_1109_JIOT_2024_3487989
proquest_journals_3171478310
ieee_primary_10753356
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref31
ref30
ref11
ref33
ref32
ref2
ref1
ref17
Li (ref15) 2020; 39
ref19
ref18
ref24
ref23
ref25
ref20
ref22
ref21
ref28
Li (ref10) 2020; 39
Koch (ref26)
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Wang (ref16) 2018; 38
References_xml – ident: ref13
  doi: 10.1109/JSEN.2020.3030910
– volume: 38
  start-page: 129
  year: 2018
  ident: ref16
  article-title: Fault diagnosis of power transformer based on BR-DBN
  publication-title: Elect. Power Autom. Equip.
– ident: ref9
  doi: 10.3390/s22093314
– ident: ref17
  doi: 10.1109/JSEN.2024.3409768
– ident: ref32
  doi: 10.1007/s11071-021-06393-4
– ident: ref3
  doi: 10.1109/JIOT.2022.3168317
– ident: ref23
  doi: 10.1016/j.ress.2023.109387
– ident: ref27
  doi: 10.1109/CVPR.2006.100
– ident: ref22
  doi: 10.1080/00207543.2022.2122621
– ident: ref28
  doi: 10.1109/TII.2019.2943898
– ident: ref14
  doi: 10.1016/j.ymssp.2017.08.002
– ident: ref19
  doi: 10.1007/s10845-020-01579-w
– ident: ref7
  doi: 10.1109/TR.2023.3328597
– volume: 39
  start-page: 187
  issue: 24
  year: 2020
  ident: ref10
  article-title: Fault diagnosis of rolling bearing based on an improved convolutional neural network using SFLA
  publication-title: J. Vib. Shock
– volume: 39
  start-page: 89
  year: 2020
  ident: ref15
  article-title: Rolling bearing fault diagnosis based on DBN algorithm improved with PSO
  publication-title: J. Vib. Shock
– ident: ref33
  doi: 10.1088/1361-6501/ad57d9
– ident: ref6
  doi: 10.1142/S0218539319500128
– ident: ref2
  doi: 10.1109/JIOT.2024.3363837
– ident: ref18
  doi: 10.1109/TII.2020.2968370
– ident: ref25
  doi: 10.1145/3582688
– ident: ref20
  doi: 10.1109/TIE.2016.2627020
– ident: ref12
  doi: 10.1016/j.measurement.2016.04.007
– ident: ref5
  doi: 10.1109/TIM.2024.3351254
– ident: ref21
  doi: 10.1016/j.simpat.2022.102659
– ident: ref29
  doi: 10.1109/TIM.2023.3293554
– ident: ref1
  doi: 10.1109/JIOT.2024.3363610
– ident: ref30
  doi: 10.3390/s17020425
– start-page: 1
  volume-title: Proc. ICML Deep Learn. Workshop
  ident: ref26
  article-title: Siamese neural networks for one-shot image recognition
– ident: ref31
  doi: 10.1109/ACCESS.2019.2934233
– ident: ref8
  doi: 10.1109/TMECH.2023.3267699
– ident: ref4
  doi: 10.1109/JIOT.2020.3004452
– ident: ref11
  doi: 10.1016/j.cie.2021.107451
– ident: ref24
  doi: 10.1016/j.knosys.2022.109846
SSID ssj0001105196
Score 2.3592136
Snippet Bearing fault diagnosis is critical for ensuring mechanical reliability and operational safety. Industrial Internet of Things (IIoT) sensors provide real-time...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5233
SubjectTerms Artificial neural networks
Automation
Classification
Convolution
Convolutional codes
Convolutional denoising autoencoder (DAE)
Data models
Decoding
Fault diagnosis
Feature extraction
Industrial applications
Industrial Internet of Things
Internet of Things
Neural networks
Noise
Noise reduction
Real time
Roller bearings
rolling bearing
Rolling bearings
siamese neural network
signal processing
small sample
Training
White noise
Title Fault Diagnosis of Rolling Bearing Using Convolutional Denoising Autoencoder and Siamese Neural Network With Small Sample
URI https://ieeexplore.ieee.org/document/10753356
https://www.proquest.com/docview/3171478310
Volume 12
WOSCitedRecordID wos001433294700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS-QwFA4qHvaiq6s4ris5eFqotmnaTI6u7qAeRmFc9FbS5BULYyszHcF_73tpZldYFOylpbyUwveSfC95eR9jRxVASjQ1cpW1kbToxtroLBqWIq60KOUQpBebUOPx8P5e34TD6v4sDAD45DM4pke_l-9au6ClMuzhSK7TLF9lq0rl_WGtfwsqCbGRPOxcJrE-ubq8vsUIUMjjFGm5JiX3N3OPF1P5bwT208po85M_9JVtBP7IT3vAt9gKNNtsc6nNwENX_cZeRmYx7fh5n0lXz3lb8VCAm_9C76a7TxfgZ23zHPwPP3wOTVv796eLrqUqlw4_axrHJzUl1AKnch5oOO7zx_ld3T3wyaOZTvnEUKnhHfZn9Pv27CIKMguRFVp2UZLHrsRhTunKgtQWr0So0iK1S0vpQDqc5VyJNsidVG5F7JLYZMq5JLUGx6ddtta0DewxXgk31A6UzCorRWmMwvAQINMlZBjYiAGLlwAUNtQgJymMaeFjkVgXhFlBmBUBswH7-bfJU1-A4yPjHQLpjWGPz4AdLGEuQh-dFylpvysSWtt_p9l39kWQ3K9POTtga91sAT_Yun3u6vns0LvfK264270
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BQYILLdCKhbb40BNSSuI4m_WxX6sW2gVpF9Fb5NgTNdI2Qd1sJf49M46XVkJUai6JonEU6Y3tN_Z4HsBehZgyTY1cZW2kLLmxNjqLRqWMKy1LNULlxSbyyWR0eam_h8Pq_iwMIvrkM9znR7-X71q75KUy6uFErtNs-BSeZUrJuD-udbekkjAfGYa9yyTWn7-cfZtRDCjVfkrEXLOW-73Zx8up_DMG-4llvP7IX9qAV4FBioMe8tfwBJs3sL5SZxChs76F32OznHfiuM-lqxeirUQowS0Oyb_57hMGxFHb3AYPpA8fY9PW_v3Bsmu5zqWjz5rGiWnNKbUouKAHGU76DHLxs-6uxPTazOdiarjY8Cb8GJ_Mjk6jILQQWalVFyXD2JU00OW6sqi0pSuReWmJ3KWlcqgczXOuJBtiT_nQytglscly55LUGhqhtmCtaRt8B6KSbqQd5iqrrJKlMTkFiIiZLjGj0EYOIF4BUNhQhZzFMOaFj0ZiXTBmBWNWBMwG8Olvk199CY6HjDcZpHuGPT4D2F7BXIReuihSVn_PWWrt_X-afYQXp7OL8-L8bPL1A7yULP7rE9C2Ya27WeIOPLe3Xb242fWu-Af_mN8E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Diagnosis+of+Rolling+Bearing+Using+Convolutional+Denoising+Autoencoder+and+Siamese+Neural+Network+With+Small+Sample&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zhao%2C+Xufeng&rft.au=Chen%2C+Ying&rft.au=Yang%2C+Mengshu&rft.au=Xiang%2C+Jiawei&rft.date=2025-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=12&rft.issue=5&rft.spage=5233&rft_id=info:doi/10.1109%2FJIOT.2024.3487989&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon