Seismic Multichannel Deconvolution via 2-D K-SVD and MSD-oCSC

The deconvolution method is crucial for enhancing seismic resolution. Traditional multichannel schemes incorporate lateral constraints to enhance data continuity and integrity. However, a predominant challenge is that many existing methods assume that the estimated model parameters have certain feat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing Jg. 62; S. 1 - 13
Hauptverfasser: Wang, Yaojun, Gao, Xiayu, Zhang, Guiqian, Zou, Bangli, Hu, Guangmin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0196-2892, 1558-0644
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The deconvolution method is crucial for enhancing seismic resolution. Traditional multichannel schemes incorporate lateral constraints to enhance data continuity and integrity. However, a predominant challenge is that many existing methods assume that the estimated model parameters have certain features, which are always inconsistent with the true situation. In this article, we present a novel data-driven multichannel seismic deconvolution method based on convolutional sparse coding (CSC) and 2-D <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-means singular value decomposition (K-SVD). We partition the seismic profile into low- and high-frequency segments, addressing CSC's limitation in representing low-frequency components effectively. We leverage 2-D K-SVD for extracting lateral features in low-frequency components and apply CSC to the high-frequency segments. Distinctively, our method accounts for the lateral characteristics within both frequency bands during decomposition, a notable advancement over conventional filtering-based techniques. It ensures the preserved convolutional relationship in frequency separation. We enhance the conventional 1-D K-SVD with 2-D sample patches, evolving it into a more adept 2-D K-SVD dictionary for low-frequency components. We apply this to multichannel deconvolution regularization, enabling low-frequency seismic data deconvolution. To address the challenge of information fragmentation in high-frequency components caused by block-based sparse coding, the orthogonal constrains are added into the feature map instead of the image, making the convolutional dictionary learning more precise than the conventional CSC algorithm. This refinement is integral to optimizing the high-frequency deconvolution objective function. In the final step, iterative processing of both frequency components yields the refined multichannel seismic deconvolution via orthogonal convolution sparse coding (MSD-oCSC). Our method's efficacy is corroborated through rigorous model tests and real data applications.
AbstractList The deconvolution method is crucial for enhancing seismic resolution. Traditional multichannel schemes incorporate lateral constraints to enhance data continuity and integrity. However, a predominant challenge is that many existing methods assume that the estimated model parameters have certain features, which are always inconsistent with the true situation. In this article, we present a novel data-driven multichannel seismic deconvolution method based on convolutional sparse coding (CSC) and 2-D <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-means singular value decomposition (K-SVD). We partition the seismic profile into low- and high-frequency segments, addressing CSC's limitation in representing low-frequency components effectively. We leverage 2-D K-SVD for extracting lateral features in low-frequency components and apply CSC to the high-frequency segments. Distinctively, our method accounts for the lateral characteristics within both frequency bands during decomposition, a notable advancement over conventional filtering-based techniques. It ensures the preserved convolutional relationship in frequency separation. We enhance the conventional 1-D K-SVD with 2-D sample patches, evolving it into a more adept 2-D K-SVD dictionary for low-frequency components. We apply this to multichannel deconvolution regularization, enabling low-frequency seismic data deconvolution. To address the challenge of information fragmentation in high-frequency components caused by block-based sparse coding, the orthogonal constrains are added into the feature map instead of the image, making the convolutional dictionary learning more precise than the conventional CSC algorithm. This refinement is integral to optimizing the high-frequency deconvolution objective function. In the final step, iterative processing of both frequency components yields the refined multichannel seismic deconvolution via orthogonal convolution sparse coding (MSD-oCSC). Our method's efficacy is corroborated through rigorous model tests and real data applications.
The deconvolution method is crucial for enhancing seismic resolution. Traditional multichannel schemes incorporate lateral constraints to enhance data continuity and integrity. However, a predominant challenge is that many existing methods assume that the estimated model parameters have certain features, which are always inconsistent with the true situation. In this article, we present a novel data-driven multichannel seismic deconvolution method based on convolutional sparse coding (CSC) and 2-D [Formula Omitted]-means singular value decomposition (K-SVD). We partition the seismic profile into low- and high-frequency segments, addressing CSC’s limitation in representing low-frequency components effectively. We leverage 2-D K-SVD for extracting lateral features in low-frequency components and apply CSC to the high-frequency segments. Distinctively, our method accounts for the lateral characteristics within both frequency bands during decomposition, a notable advancement over conventional filtering-based techniques. It ensures the preserved convolutional relationship in frequency separation. We enhance the conventional 1-D K-SVD with 2-D sample patches, evolving it into a more adept 2-D K-SVD dictionary for low-frequency components. We apply this to multichannel deconvolution regularization, enabling low-frequency seismic data deconvolution. To address the challenge of information fragmentation in high-frequency components caused by block-based sparse coding, the orthogonal constrains are added into the feature map instead of the image, making the convolutional dictionary learning more precise than the conventional CSC algorithm. This refinement is integral to optimizing the high-frequency deconvolution objective function. In the final step, iterative processing of both frequency components yields the refined multichannel seismic deconvolution via orthogonal convolution sparse coding (MSD-oCSC). Our method’s efficacy is corroborated through rigorous model tests and real data applications.
Author Wang, Yaojun
Zou, Bangli
Zhang, Guiqian
Hu, Guangmin
Gao, Xiayu
Author_xml – sequence: 1
  givenname: Yaojun
  orcidid: 0000-0001-9079-0840
  surname: Wang
  fullname: Wang, Yaojun
  email: yaojun.wang@uestc.edu.cn
  organization: School of Resources and Environment and the Center for Information Geoscience, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 2
  givenname: Xiayu
  surname: Gao
  fullname: Gao, Xiayu
  organization: School of Resources and Environment and the Center for Information Geoscience, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 3
  givenname: Guiqian
  surname: Zhang
  fullname: Zhang, Guiqian
  organization: School of Resources and Environment and the Center for Information Geoscience, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 4
  givenname: Bangli
  surname: Zou
  fullname: Zou, Bangli
  organization: School of Resources and Environment and the Center for Information Geoscience, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 5
  givenname: Guangmin
  surname: Hu
  fullname: Hu, Guangmin
  organization: School of Resources and Environment and the Center for Information Geoscience, University of Electronic Science and Technology of China (UESTC), Chengdu, China
BookMark eNp9kMtKw0AUQAepYFv9AMFFwPXUeT8WLiTRKrYIprodJukEp6QzNY-Cf29DXYgLV3dzzr3cMwGjEIMD4BKjGcZI36zmr_mMIMJmlHKJuDwBY8y5gkgwNgJjhLWARGlyBiZtu0EIM47lGNzmzrdbXybLvu58-WFDcHWSuTKGfaz7zseQ7L1NCMySZ5i_Z4kN62SZZzCmeXoOTitbt-7iZ07B28P9Kn2Ei5f5U3q3gCXRrIOYVMwpXVWFlkwqgSxFtGRIqEpj6wpKZYGkUKRQco2ZXItKKFFoxDmlheJ0Cq6Pe3dN_Oxd25lN7JtwOGmIJhQTpgU5UPJIlU1s28ZVpvSdHV7oGutrg5EZWpmhlRlamZ9WBxP_MXeN39rm61_n6uh459wvnmGsKabfCyJzFQ
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3517149
crossref_primary_10_1109_TGRS_2024_3387756
crossref_primary_10_1093_jge_gxaf090
crossref_primary_10_1190_geo2024_0006_1
Cites_doi 10.1190/1.1444293
10.1190/INT-2016-0049.1
10.1190/geo2015-0004.1
10.1190/image2023-3909982.1
10.1109/cvpr.2004.1315043
10.1109/ICASSP.2018.8462151
10.1109/TMI.2019.2906853
10.1109/TMI.2012.2195669
10.1109/TSP.2006.881199
10.1109/LGRS.2019.2945799
10.1111/1365-2478.13232
10.1007/s11600-018-0160-z
10.1190/geo2022-0561.1
10.1190/geo2019-0746.1
10.1016/j.jvcir.2018.12.036
10.1016/j.petsci.2023.02.023
10.1190/1.1440921
10.1109/CVPR.2008.4587647
10.1109/CVPR.2010.5539957
10.1109/TGRS.2021.3105300
10.1190/1.1439873
10.1109/ICCV.2015.212
10.1088/1742-2132/10/3/035012
10.1111/j.1365-2478.1990.tb01852.x
10.1190/geo2020-0345.1
10.1109/TIP.2003.819861
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3357057
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 13
ExternalDocumentID 10_1109_TGRS_2024_3357057
10411931
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42174151
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-12f4e89ffb9747860a303c4068f91aeb337b07682b87d147d6f686b905533b853
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001173250800025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:32:49 EDT 2025
Sat Nov 29 03:32:31 EST 2025
Tue Nov 18 21:15:21 EST 2025
Wed Aug 27 02:17:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-12f4e89ffb9747860a303c4068f91aeb337b07682b87d147d6f686b905533b853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9079-0840
PQID 2923124962
PQPubID 85465
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2024_3357057
crossref_primary_10_1109_TGRS_2024_3357057
ieee_primary_10411931
proquest_journals_2923124962
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.1190/1.1444293
– ident: ref11
  doi: 10.1190/INT-2016-0049.1
– ident: ref7
  doi: 10.1190/geo2015-0004.1
– ident: ref10
  doi: 10.1190/image2023-3909982.1
– ident: ref20
  doi: 10.1109/cvpr.2004.1315043
– ident: ref25
  doi: 10.1109/ICASSP.2018.8462151
– ident: ref19
  doi: 10.1109/TMI.2019.2906853
– ident: ref24
  doi: 10.1109/TMI.2012.2195669
– ident: ref18
  doi: 10.1109/TSP.2006.881199
– ident: ref16
  doi: 10.1109/LGRS.2019.2945799
– ident: ref4
  doi: 10.1111/1365-2478.13232
– ident: ref9
  doi: 10.1007/s11600-018-0160-z
– ident: ref5
  doi: 10.1190/geo2022-0561.1
– ident: ref14
  doi: 10.1190/geo2019-0746.1
– ident: ref22
  doi: 10.1016/j.jvcir.2018.12.036
– ident: ref15
  doi: 10.1016/j.petsci.2023.02.023
– ident: ref3
  doi: 10.1190/1.1440921
– ident: ref21
  doi: 10.1109/CVPR.2008.4587647
– ident: ref23
  doi: 10.1109/CVPR.2010.5539957
– ident: ref17
  doi: 10.1109/TGRS.2021.3105300
– ident: ref1
  doi: 10.1190/1.1439873
– ident: ref13
  doi: 10.1109/ICCV.2015.212
– ident: ref8
  doi: 10.1088/1742-2132/10/3/035012
– ident: ref2
  doi: 10.1111/j.1365-2478.1990.tb01852.x
– ident: ref12
  doi: 10.1190/geo2020-0345.1
– ident: ref26
  doi: 10.1109/TIP.2003.819861
SSID ssj0014517
Score 2.4688842
Snippet The deconvolution method is crucial for enhancing seismic resolution. Traditional multichannel schemes incorporate lateral constraints to enhance data...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 2-D K-means singular value decomposition (K-SVD)
Algorithms
Coding
Components
Convolution
Convolutional codes
convolutional sparse coding (CSC)
Decomposition
Deconvolution
Dictionaries
Encoding
Feature maps
Frequencies
Glossaries
Image coding
Iterative methods
Linear programming
multichannel
Objective function
Reflectivity
Regularization
Segments
Seismic analysis
Seismic data
seismic deconvolution
Seismic profiles
Seismology
Singular value decomposition
Title Seismic Multichannel Deconvolution via 2-D K-SVD and MSD-oCSC
URI https://ieeexplore.ieee.org/document/10411931
https://www.proquest.com/docview/2923124962
Volume 62
WOSCitedRecordID wos001173250800025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86FPTgx1ScTsnBk5DZtGk-Dh5kcwrqEDtlt9K0CQxmJ_v6-03SbAxEwVsPSSm_5PW9X15-7wFwJQoeZ5TbnCEniHCJkYxihQjRubGmTAbYCYWfWa_HBwPx6sXqTgujlHKXz1TLPrpcfjHO5_aozFg4wSbgMGRnkzFaibVWKQMSY6-NpsiwiNCnMHEgbvoPb4mhgiFpRVHMAuuK1pyQ66ry41fs_Et3_59fdgD2fCAJ76qVPwQbqqyD3bXygnWw7a535tMjcJuo4fRzmEOnt7Vi31KNYMeS4YXfe3AxzGCIOvAJJR8dmJUFfEk6aNxO2sfgvXvfbz8i3zgB5aEgM4RDTRQXWkvLFjgNMuOocuO6uRY4M_Q5YtJm4ELJWYEJK6imnEoRxCb4k8aBn4BaOS7VKYDKzhGa2kiKUC4zbXAsYsWoZirDQQMESyTT3FcVt80tRqljF4FILfipBT_14DfA9WrKV1VS46_BxxbttYEV0A3QXK5X6q1umoY2WjV8koZnv0w7Bzv27dUZShPUZpO5ugBb-WI2nE4u3Yb6Bkxfw2I
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB1VFER74CMNakoKPnBCcrreeL32oQeUNAWRRIhNK26r9a4tRYJNRT5-fz2OQZEQSNz2YGtXz56deR6_GYAzVcmkEBJzhpJTLjWjupsYyrktnTUVOmJeKDxMx2N5d6dugljda2GMMf7ymengo8_lV7NyiUdlzsI5cwGHIzsfsXVWkGs9Jw14woI6WlDHI-KQxGSR-jH5fZs5MhjzTrebpBE6ow035PuqvPgZew8z2H_ntx3AXgglycV67Q_hg6kb8HmjwGADdvwFz3L-BX5mZjp_mJbEK25R7lube9JHOrwKu4-spgWJaZ9c0-xvnxR1RUZZn856Wa8Jfwa_Jr1LGlon0DJWfEFZbLmRylqNfEGKqHCuqnTOW1rFCkegu6nGHFysZVoxnlbCCim0ihIX_mnnwo9gq57V5isQg3OUFRhLcSF1YR2OVWJSYVNTsKgF0ROSeRnqimN7i_vc84tI5Qh-juDnAfwWnD9P-bcuqvHW4CaivTFwDXQL2k_rlQe7m-cxxquOUYr42yvTTmH3cjIa5sOr8fUxfMI3rU9U2rC1eFya77BdrhbT-eOJ31z_AazTxqs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seismic+Multichannel+Deconvolution+via+2-D+K-SVD+and+MSD-oCSC&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wang%2C+Yaojun&rft.au=Gao%2C+Xiayu&rft.au=Zhang%2C+Guiqian&rft.au=Zou%2C+Bangli&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2024.3357057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3357057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon