Seismic Multichannel Deconvolution via 2-D K-SVD and MSD-oCSC
The deconvolution method is crucial for enhancing seismic resolution. Traditional multichannel schemes incorporate lateral constraints to enhance data continuity and integrity. However, a predominant challenge is that many existing methods assume that the estimated model parameters have certain feat...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on geoscience and remote sensing Jg. 62; S. 1 - 13 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The deconvolution method is crucial for enhancing seismic resolution. Traditional multichannel schemes incorporate lateral constraints to enhance data continuity and integrity. However, a predominant challenge is that many existing methods assume that the estimated model parameters have certain features, which are always inconsistent with the true situation. In this article, we present a novel data-driven multichannel seismic deconvolution method based on convolutional sparse coding (CSC) and 2-D <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-means singular value decomposition (K-SVD). We partition the seismic profile into low- and high-frequency segments, addressing CSC's limitation in representing low-frequency components effectively. We leverage 2-D K-SVD for extracting lateral features in low-frequency components and apply CSC to the high-frequency segments. Distinctively, our method accounts for the lateral characteristics within both frequency bands during decomposition, a notable advancement over conventional filtering-based techniques. It ensures the preserved convolutional relationship in frequency separation. We enhance the conventional 1-D K-SVD with 2-D sample patches, evolving it into a more adept 2-D K-SVD dictionary for low-frequency components. We apply this to multichannel deconvolution regularization, enabling low-frequency seismic data deconvolution. To address the challenge of information fragmentation in high-frequency components caused by block-based sparse coding, the orthogonal constrains are added into the feature map instead of the image, making the convolutional dictionary learning more precise than the conventional CSC algorithm. This refinement is integral to optimizing the high-frequency deconvolution objective function. In the final step, iterative processing of both frequency components yields the refined multichannel seismic deconvolution via orthogonal convolution sparse coding (MSD-oCSC). Our method's efficacy is corroborated through rigorous model tests and real data applications. |
|---|---|
| AbstractList | The deconvolution method is crucial for enhancing seismic resolution. Traditional multichannel schemes incorporate lateral constraints to enhance data continuity and integrity. However, a predominant challenge is that many existing methods assume that the estimated model parameters have certain features, which are always inconsistent with the true situation. In this article, we present a novel data-driven multichannel seismic deconvolution method based on convolutional sparse coding (CSC) and 2-D <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-means singular value decomposition (K-SVD). We partition the seismic profile into low- and high-frequency segments, addressing CSC's limitation in representing low-frequency components effectively. We leverage 2-D K-SVD for extracting lateral features in low-frequency components and apply CSC to the high-frequency segments. Distinctively, our method accounts for the lateral characteristics within both frequency bands during decomposition, a notable advancement over conventional filtering-based techniques. It ensures the preserved convolutional relationship in frequency separation. We enhance the conventional 1-D K-SVD with 2-D sample patches, evolving it into a more adept 2-D K-SVD dictionary for low-frequency components. We apply this to multichannel deconvolution regularization, enabling low-frequency seismic data deconvolution. To address the challenge of information fragmentation in high-frequency components caused by block-based sparse coding, the orthogonal constrains are added into the feature map instead of the image, making the convolutional dictionary learning more precise than the conventional CSC algorithm. This refinement is integral to optimizing the high-frequency deconvolution objective function. In the final step, iterative processing of both frequency components yields the refined multichannel seismic deconvolution via orthogonal convolution sparse coding (MSD-oCSC). Our method's efficacy is corroborated through rigorous model tests and real data applications. The deconvolution method is crucial for enhancing seismic resolution. Traditional multichannel schemes incorporate lateral constraints to enhance data continuity and integrity. However, a predominant challenge is that many existing methods assume that the estimated model parameters have certain features, which are always inconsistent with the true situation. In this article, we present a novel data-driven multichannel seismic deconvolution method based on convolutional sparse coding (CSC) and 2-D [Formula Omitted]-means singular value decomposition (K-SVD). We partition the seismic profile into low- and high-frequency segments, addressing CSC’s limitation in representing low-frequency components effectively. We leverage 2-D K-SVD for extracting lateral features in low-frequency components and apply CSC to the high-frequency segments. Distinctively, our method accounts for the lateral characteristics within both frequency bands during decomposition, a notable advancement over conventional filtering-based techniques. It ensures the preserved convolutional relationship in frequency separation. We enhance the conventional 1-D K-SVD with 2-D sample patches, evolving it into a more adept 2-D K-SVD dictionary for low-frequency components. We apply this to multichannel deconvolution regularization, enabling low-frequency seismic data deconvolution. To address the challenge of information fragmentation in high-frequency components caused by block-based sparse coding, the orthogonal constrains are added into the feature map instead of the image, making the convolutional dictionary learning more precise than the conventional CSC algorithm. This refinement is integral to optimizing the high-frequency deconvolution objective function. In the final step, iterative processing of both frequency components yields the refined multichannel seismic deconvolution via orthogonal convolution sparse coding (MSD-oCSC). Our method’s efficacy is corroborated through rigorous model tests and real data applications. |
| Author | Wang, Yaojun Zou, Bangli Zhang, Guiqian Hu, Guangmin Gao, Xiayu |
| Author_xml | – sequence: 1 givenname: Yaojun orcidid: 0000-0001-9079-0840 surname: Wang fullname: Wang, Yaojun email: yaojun.wang@uestc.edu.cn organization: School of Resources and Environment and the Center for Information Geoscience, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 2 givenname: Xiayu surname: Gao fullname: Gao, Xiayu organization: School of Resources and Environment and the Center for Information Geoscience, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 3 givenname: Guiqian surname: Zhang fullname: Zhang, Guiqian organization: School of Resources and Environment and the Center for Information Geoscience, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 4 givenname: Bangli surname: Zou fullname: Zou, Bangli organization: School of Resources and Environment and the Center for Information Geoscience, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 5 givenname: Guangmin surname: Hu fullname: Hu, Guangmin organization: School of Resources and Environment and the Center for Information Geoscience, University of Electronic Science and Technology of China (UESTC), Chengdu, China |
| BookMark | eNp9kMtKw0AUQAepYFv9AMFFwPXUeT8WLiTRKrYIprodJukEp6QzNY-Cf29DXYgLV3dzzr3cMwGjEIMD4BKjGcZI36zmr_mMIMJmlHKJuDwBY8y5gkgwNgJjhLWARGlyBiZtu0EIM47lGNzmzrdbXybLvu58-WFDcHWSuTKGfaz7zseQ7L1NCMySZ5i_Z4kN62SZZzCmeXoOTitbt-7iZ07B28P9Kn2Ei5f5U3q3gCXRrIOYVMwpXVWFlkwqgSxFtGRIqEpj6wpKZYGkUKRQco2ZXItKKFFoxDmlheJ0Cq6Pe3dN_Oxd25lN7JtwOGmIJhQTpgU5UPJIlU1s28ZVpvSdHV7oGutrg5EZWpmhlRlamZ9WBxP_MXeN39rm61_n6uh459wvnmGsKabfCyJzFQ |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3517149 crossref_primary_10_1109_TGRS_2024_3387756 crossref_primary_10_1093_jge_gxaf090 crossref_primary_10_1190_geo2024_0006_1 |
| Cites_doi | 10.1190/1.1444293 10.1190/INT-2016-0049.1 10.1190/geo2015-0004.1 10.1190/image2023-3909982.1 10.1109/cvpr.2004.1315043 10.1109/ICASSP.2018.8462151 10.1109/TMI.2019.2906853 10.1109/TMI.2012.2195669 10.1109/TSP.2006.881199 10.1109/LGRS.2019.2945799 10.1111/1365-2478.13232 10.1007/s11600-018-0160-z 10.1190/geo2022-0561.1 10.1190/geo2019-0746.1 10.1016/j.jvcir.2018.12.036 10.1016/j.petsci.2023.02.023 10.1190/1.1440921 10.1109/CVPR.2008.4587647 10.1109/CVPR.2010.5539957 10.1109/TGRS.2021.3105300 10.1190/1.1439873 10.1109/ICCV.2015.212 10.1088/1742-2132/10/3/035012 10.1111/j.1365-2478.1990.tb01852.x 10.1190/geo2020-0345.1 10.1109/TIP.2003.819861 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2024.3357057 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 13 |
| ExternalDocumentID | 10_1109_TGRS_2024_3357057 10411931 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42174151 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c294t-12f4e89ffb9747860a303c4068f91aeb337b07682b87d147d6f686b905533b853 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001173250800025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:32:49 EDT 2025 Sat Nov 29 03:32:31 EST 2025 Tue Nov 18 21:15:21 EST 2025 Wed Aug 27 02:17:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-12f4e89ffb9747860a303c4068f91aeb337b07682b87d147d6f686b905533b853 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9079-0840 |
| PQID | 2923124962 |
| PQPubID | 85465 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2024_3357057 crossref_primary_10_1109_TGRS_2024_3357057 ieee_primary_10411931 proquest_journals_2923124962 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref6 doi: 10.1190/1.1444293 – ident: ref11 doi: 10.1190/INT-2016-0049.1 – ident: ref7 doi: 10.1190/geo2015-0004.1 – ident: ref10 doi: 10.1190/image2023-3909982.1 – ident: ref20 doi: 10.1109/cvpr.2004.1315043 – ident: ref25 doi: 10.1109/ICASSP.2018.8462151 – ident: ref19 doi: 10.1109/TMI.2019.2906853 – ident: ref24 doi: 10.1109/TMI.2012.2195669 – ident: ref18 doi: 10.1109/TSP.2006.881199 – ident: ref16 doi: 10.1109/LGRS.2019.2945799 – ident: ref4 doi: 10.1111/1365-2478.13232 – ident: ref9 doi: 10.1007/s11600-018-0160-z – ident: ref5 doi: 10.1190/geo2022-0561.1 – ident: ref14 doi: 10.1190/geo2019-0746.1 – ident: ref22 doi: 10.1016/j.jvcir.2018.12.036 – ident: ref15 doi: 10.1016/j.petsci.2023.02.023 – ident: ref3 doi: 10.1190/1.1440921 – ident: ref21 doi: 10.1109/CVPR.2008.4587647 – ident: ref23 doi: 10.1109/CVPR.2010.5539957 – ident: ref17 doi: 10.1109/TGRS.2021.3105300 – ident: ref1 doi: 10.1190/1.1439873 – ident: ref13 doi: 10.1109/ICCV.2015.212 – ident: ref8 doi: 10.1088/1742-2132/10/3/035012 – ident: ref2 doi: 10.1111/j.1365-2478.1990.tb01852.x – ident: ref12 doi: 10.1190/geo2020-0345.1 – ident: ref26 doi: 10.1109/TIP.2003.819861 |
| SSID | ssj0014517 |
| Score | 2.4688842 |
| Snippet | The deconvolution method is crucial for enhancing seismic resolution. Traditional multichannel schemes incorporate lateral constraints to enhance data... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 2-D K-means singular value decomposition (K-SVD) Algorithms Coding Components Convolution Convolutional codes convolutional sparse coding (CSC) Decomposition Deconvolution Dictionaries Encoding Feature maps Frequencies Glossaries Image coding Iterative methods Linear programming multichannel Objective function Reflectivity Regularization Segments Seismic analysis Seismic data seismic deconvolution Seismic profiles Seismology Singular value decomposition |
| Title | Seismic Multichannel Deconvolution via 2-D K-SVD and MSD-oCSC |
| URI | https://ieeexplore.ieee.org/document/10411931 https://www.proquest.com/docview/2923124962 |
| Volume | 62 |
| WOSCitedRecordID | wos001173250800025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86FPTgx1ScTsnBk5DZtGk-Dh5kcwrqEDtlt9K0CQxmJ_v6-03SbAxEwVsPSSm_5PW9X15-7wFwJQoeZ5TbnCEniHCJkYxihQjRubGmTAbYCYWfWa_HBwPx6sXqTgujlHKXz1TLPrpcfjHO5_aozFg4wSbgMGRnkzFaibVWKQMSY6-NpsiwiNCnMHEgbvoPb4mhgiFpRVHMAuuK1pyQ66ry41fs_Et3_59fdgD2fCAJ76qVPwQbqqyD3bXygnWw7a535tMjcJuo4fRzmEOnt7Vi31KNYMeS4YXfe3AxzGCIOvAJJR8dmJUFfEk6aNxO2sfgvXvfbz8i3zgB5aEgM4RDTRQXWkvLFjgNMuOocuO6uRY4M_Q5YtJm4ELJWYEJK6imnEoRxCb4k8aBn4BaOS7VKYDKzhGa2kiKUC4zbXAsYsWoZirDQQMESyTT3FcVt80tRqljF4FILfipBT_14DfA9WrKV1VS46_BxxbttYEV0A3QXK5X6q1umoY2WjV8koZnv0w7Bzv27dUZShPUZpO5ugBb-WI2nE4u3Yb6Bkxfw2I |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB1VFER74CMNakoKPnBCcrreeL32oQeUNAWRRIhNK26r9a4tRYJNRT5-fz2OQZEQSNz2YGtXz56deR6_GYAzVcmkEBJzhpJTLjWjupsYyrktnTUVOmJeKDxMx2N5d6dugljda2GMMf7ymengo8_lV7NyiUdlzsI5cwGHIzsfsXVWkGs9Jw14woI6WlDHI-KQxGSR-jH5fZs5MhjzTrebpBE6ow035PuqvPgZew8z2H_ntx3AXgglycV67Q_hg6kb8HmjwGADdvwFz3L-BX5mZjp_mJbEK25R7lube9JHOrwKu4-spgWJaZ9c0-xvnxR1RUZZn856Wa8Jfwa_Jr1LGlon0DJWfEFZbLmRylqNfEGKqHCuqnTOW1rFCkegu6nGHFysZVoxnlbCCim0ihIX_mnnwo9gq57V5isQg3OUFRhLcSF1YR2OVWJSYVNTsKgF0ROSeRnqimN7i_vc84tI5Qh-juDnAfwWnD9P-bcuqvHW4CaivTFwDXQL2k_rlQe7m-cxxquOUYr42yvTTmH3cjIa5sOr8fUxfMI3rU9U2rC1eFya77BdrhbT-eOJ31z_AazTxqs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seismic+Multichannel+Deconvolution+via+2-D+K-SVD+and+MSD-oCSC&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wang%2C+Yaojun&rft.au=Gao%2C+Xiayu&rft.au=Zhang%2C+Guiqian&rft.au=Zou%2C+Bangli&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2024.3357057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3357057 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |