A State Sum for the Total Face Color Polynomial

ABSTRACT The total face color polynomial is based upon the Poincaré polynomials of a family of filtered n‐color homologies. It counts the number of n‐face colorings of ribbon graphs for each positive integer n. As such, it may be seen as a successor of the Penrose polynomial, which at n = 3 counts 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory Jg. 109; H. 4; S. 481 - 491
Hauptverfasser: Baldridge, Scott, Kauffman, Louis H., McCarty, Ben
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc 01.08.2025
Schlagworte:
ISSN:0364-9024, 1097-0118
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract ABSTRACT The total face color polynomial is based upon the Poincaré polynomials of a family of filtered n‐color homologies. It counts the number of n‐face colorings of ribbon graphs for each positive integer n. As such, it may be seen as a successor of the Penrose polynomial, which at n = 3 counts 3‐edge colorings (and consequently 4‐face colorings) of planar trivalent graphs. In this paper, we describe a state sum formula for the polynomial. This formula unites two different perspectives about graph coloring: one based upon topological quantum field theory and the other on diagrammatic tensors.
AbstractList ABSTRACT The total face color polynomial is based upon the Poincaré polynomials of a family of filtered n‐color homologies. It counts the number of n‐face colorings of ribbon graphs for each positive integer n. As such, it may be seen as a successor of the Penrose polynomial, which at n = 3 counts 3‐edge colorings (and consequently 4‐face colorings) of planar trivalent graphs. In this paper, we describe a state sum formula for the polynomial. This formula unites two different perspectives about graph coloring: one based upon topological quantum field theory and the other on diagrammatic tensors.
The total face color polynomial is based upon the Poincaré polynomials of a family of filtered n‐color homologies. It counts the number of n‐face colorings of ribbon graphs for each positive integer n. As such, it may be seen as a successor of the Penrose polynomial, which at n = 3 counts 3‐edge colorings (and consequently 4‐face colorings) of planar trivalent graphs. In this paper, we describe a state sum formula for the polynomial. This formula unites two different perspectives about graph coloring: one based upon topological quantum field theory and the other on diagrammatic tensors.
The total face color polynomial is based upon the Poincaré polynomials of a family of filtered ‐color homologies. It counts the number of ‐face colorings of ribbon graphs for each positive integer . As such, it may be seen as a successor of the Penrose polynomial, which at counts 3‐edge colorings (and consequently 4‐face colorings) of planar trivalent graphs. In this paper, we describe a state sum formula for the polynomial. This formula unites two different perspectives about graph coloring: one based upon topological quantum field theory and the other on diagrammatic tensors.
Author McCarty, Ben
Kauffman, Louis H.
Baldridge, Scott
Author_xml – sequence: 1
  givenname: Scott
  surname: Baldridge
  fullname: Baldridge, Scott
  organization: Louisiana State University
– sequence: 2
  givenname: Louis H.
  surname: Kauffman
  fullname: Kauffman, Louis H.
  organization: University of Illinois at Chicago
– sequence: 3
  givenname: Ben
  surname: McCarty
  fullname: McCarty, Ben
  email: ben.mccarty@memphis.edu
  organization: University of Memphis
BookMark eNp1kE1Lw0AQhhepYFs9-A8WPHlIO9nd7MexFFuVgkLreRnDrjYk2bpJkPx7U-PV08A7zzsDz4xM6lA7Qm5TWKQAbFl8tAvGGTcXZJqCUQmkqZ6QKXApEgNMXJFZ0xQwxBnoKVmu6L7F1tF9V1EfIm0_HT2EFku6wdzRdSiH8DWUfR2qI5bX5NJj2bibvzknb5uHw_ox2b1sn9arXZIzI0zidJ6B8wyV4IAShQeZGfSGS_SKSXw3yLPzRmmf50rxTCvHnRKZUVJpPid3491TDF-da1pbhC7Ww0vLGdNGKtBioO5HKo-haaLz9hSPFcbepmDPPuzgw_76GNjlyH4fS9f_D9rn7WFs_ABg0mBe
Cites_doi 10.37236/9214
10.1016/j.ejc.2022.103520
10.1142/S0218216525400024
10.1080/00029890.1975.11993805
10.1007/978-1-4614-6971-1
10.1006/jctb.1997.1752
10.1016/S0021-9800(66)80004-2
10.1007/s002080050030
10.1038/scientificamerican0476-126
10.1215/S0012-7094-00-10131-7
10.1016/j.ejc.2012.06.009
10.1007/978-94-009-0517-7_12
10.1016/j.aim.2004.10.015
ContentType Journal Article
Copyright 2025 Wiley Periodicals LLC.
Copyright_xml – notice: 2025 Wiley Periodicals LLC.
DBID AAYXX
CITATION
DOI 10.1002/jgt.23239
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0118
EndPage 491
ExternalDocumentID 10_1002_jgt_23239
JGT23239
Genre article
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
3-9
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
VJK
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
O8X
ID FETCH-LOGICAL-c2949-e8c50ef2a7430a6a4f0659af936af726ab9a350a6a78fcc773587e3e745976783
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001450319100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0364-9024
IngestDate Sun Nov 09 06:49:38 EST 2025
Sat Nov 29 07:52:22 EST 2025
Thu Jun 12 09:20:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2949-e8c50ef2a7430a6a4f0659af936af726ab9a350a6a78fcc773587e3e745976783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jgt.23239
PQID 3228967084
PQPubID 1006407
PageCount 11
ParticipantIDs proquest_journals_3228967084
crossref_primary_10_1002_jgt_23239
wiley_primary_10_1002_jgt_23239_JGT23239
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of graph theory
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1966; 1
2005; 197
1997; 307
1997; 70
1990
2015; 60
2013; 34
2020; 27
1898; 5
1971
2025
2000; 101
2013
1975; 82
1976; 4
2022; 103
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
Kauffman L. H. (e_1_2_8_12_1) 2015; 60
e_1_2_8_16_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
Penrose R. (e_1_2_8_15_1) 1971
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_10_1
e_1_2_8_11_1
Petersen J. (e_1_2_8_17_1) 1898; 5
References_xml – volume: 307
  start-page: 173
  year: 1997
  end-page: 189
  article-title: The Penrose Polynomial of a Plane Graph
  publication-title: Mathematische Annalen
– volume: 5
  start-page: 225
  year: 1898
  end-page: 227
  article-title: Sur le théorm̀e de Tait
  publication-title: L'Intermédiaire des Mathématiciens
– volume: 1
  start-page: 15
  year: 1966
  end-page: 50
  article-title: On the Algebraic Theory of Graph Colorings
  publication-title: Journal of Combinatorial Theory
– volume: 70
  start-page: 166
  issue: 1
  year: 1997
  end-page: 183
  article-title: Tutte's Edge Coloring Conjecture
  publication-title: Journal of Combinatorial Theory, Series B
– volume: 27
  issue: 2
  year: 2020
  article-title: The 2‐Factor Polynomial Detects Even Perfect Matchings
– volume: 34
  start-page: 424
  year: 2013
  end-page: 445
  article-title: A Penrose Polynomial for Embedded Graphs
  publication-title: European Journal of Combinatorics
– volume: 4
  start-page: 126
  issue: 234
  year: 1976
  end-page: 130
  article-title: Snarks, Boojums, and Other Conjectures Related to the Four‐Color‐Map Theorem
  publication-title: Mathematical Games, Scientific American
– start-page: 123
  year: 1990
  end-page: 150
– volume: 197
  start-page: 554
  issue: 2
  year: 2005
  end-page: 586
  article-title: An Endomorphism of the Khovanov Invariant
  publication-title: Advances in Mathematics
– volume: 101
  start-page: 359
  issue: 3
  year: 2000
  end-page: 426
  article-title: A Categorification of the Jones Polynomial
  publication-title: Duke Mathematical Journal
– volume: 82
  start-page: 630
  year: 1975
  end-page: 633
  article-title: Infinite Families of Nontrivial Trivalent Graphs Which Are Not Tait Colorable
  publication-title: American Mathematical Monthly
– year: 2025
  article-title: Multi‐Virtual Knot Theory
  publication-title: Journal of Knot Theory and its Ramifications
– year: 1971
– volume: 103
  year: 2022
  article-title: On Ribbon Graphs and Virtual Links
  publication-title: European Journal of Combinatorics
– volume: 60
  start-page: 251
  issue: 1
  year: 2015
  end-page: 271
  article-title: A State Calculus for Graph Coloring
  publication-title: Illinois Journal of Mathematics
– year: 2013
– ident: e_1_2_8_2_1
– ident: e_1_2_8_5_1
  doi: 10.37236/9214
– volume-title: Combinatorial Mathematics and Its Applications
  year: 1971
  ident: e_1_2_8_15_1
– ident: e_1_2_8_4_1
  doi: 10.1016/j.ejc.2022.103520
– ident: e_1_2_8_13_1
  doi: 10.1142/S0218216525400024
– ident: e_1_2_8_20_1
  doi: 10.1080/00029890.1975.11993805
– ident: e_1_2_8_11_1
– ident: e_1_2_8_14_1
  doi: 10.1007/978-1-4614-6971-1
– ident: e_1_2_8_3_1
– volume: 60
  start-page: 251
  issue: 1
  year: 2015
  ident: e_1_2_8_12_1
  article-title: A State Calculus for Graph Coloring
  publication-title: Illinois Journal of Mathematics
– ident: e_1_2_8_19_1
  doi: 10.1006/jctb.1997.1752
– volume: 5
  start-page: 225
  year: 1898
  ident: e_1_2_8_17_1
  article-title: Sur le théorm̀e de Tait
  publication-title: L'Intermédiaire des Mathématiciens
– ident: e_1_2_8_18_1
  doi: 10.1016/S0021-9800(66)80004-2
– ident: e_1_2_8_8_1
  doi: 10.1007/s002080050030
– ident: e_1_2_8_16_1
  doi: 10.1038/scientificamerican0476-126
– ident: e_1_2_8_6_1
  doi: 10.1215/S0012-7094-00-10131-7
– ident: e_1_2_8_9_1
  doi: 10.1016/j.ejc.2012.06.009
– ident: e_1_2_8_10_1
  doi: 10.1007/978-94-009-0517-7_12
– ident: e_1_2_8_7_1
  doi: 10.1016/j.aim.2004.10.015
SSID ssj0011508
Score 2.3823943
Snippet ABSTRACT The total face color polynomial is based upon the Poincaré polynomials of a family of filtered n‐color homologies. It counts the number of n‐face...
The total face color polynomial is based upon the Poincaré polynomials of a family of filtered ‐color homologies. It counts the number of ‐face colorings of...
The total face color polynomial is based upon the Poincaré polynomials of a family of filtered n‐color homologies. It counts the number of n‐face colorings of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 481
SubjectTerms coloring
Graph coloring
Graphs
Homology
perfect matching
Polynomials
Quantum theory
spectral sequence
Sums
Tensors
topological quantum field theory
Title A State Sum for the Total Face Color Polynomial
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.23239
https://www.proquest.com/docview/3228967084
Volume 109
WOSCitedRecordID wos001450319100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011508
  issn: 0364-9024
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o5kEPfovTKUE8eKnr0rRJ8DSmU2SOoRvsVtIkFWVusm6C_71Jv6YHQfAWSFqax_v4vb68XwDOGeGCYywc4qvYIZpThyutjLm7UZMGCgcibRTu0l6PjUa8vwJXRS9Mxg9R_nCzlpH6a2vgIkoaS9LQ1-f5pYEDHl-Fqm2qMplX9fqxM-yWRQRLdZ6VKonDTSwqiIVc3Cgf_hmOlhjzO1JNQ01n618fuQ2bOcJErUwldmBFT3Zh46GkZ032oNFCKchET4s3ZFArMnNoMDU4HHWE1KhtPOIM9afjT9u0LMb7MOzcDNp3Tn5zgiMxJ9zRTPqujrEw-MAVgSCxLZ-KmHuBiKmRf8SF59sZymIpKfV8RrWnKTH5hQlf3gFUJtOJPgQUqWYgfRG7PCJEKJPeaU9y31OM-5EKcA3OCgGG7xlBRphRIePQ7D5Md1-DeiHaMLeRJDSuhPGAuozU4CIV4u8vCO9vB-ng6O9Lj2Ed28t609N6dajMZwt9AmvyY_6SzE5zZfkCl6y_ow
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_mJqgPfovTqUF88KWuS9ImAV_GdE7txtAOfCtpm4oyN9mH4H9v-jl9EATfAklLc83d_XKX-wXgjFMhBcbSoFYYGVQJZohQhVrdTb_B7BDbMikUdlivx5-eRL8El3ktTMoPUQTcYs1I7HWs4HFAur5gDX19nl1oPEDEElSoTRgvQ-XqoT1wiixCzHWe5iqpIbQzypmFTFwvHv7pjxYg8ztUTXxNe-N_X7kJ6xnGRM10UWxBSY22Ya1bELROd6DeRAnMRI_zN6RxK9J9yB1rJI7aMlCopW3iBPXHw8-4bFkOd2HQvnZbHSO7O8EIsKDCUDywTBVhqRGCKW1JoziBKiNBbBkx_Qd8IYkV9zAeBQFjxOJMEcWo3mFoB0b2oDwaj9Q-ID9s2IElI1P4lMpQb_AUCYRFQi4sP7RxFU5zCXrvKUWGl5IhY0_P3ktmX4VaLlsv05Kpp40JFzYzOa3CeSLF31_g3d24SePg70NPYKXjdh3Pue3dH8Iqjq_uTc7u1aA8m8zVESwHH7OX6eQ4WzlfJ1jDkw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MTUQfvIvTqUF88KWuS5MmAV_GZr3NMXQD30rapKLMbewi-O9Nb5s-CIJvgVxoTs_la07PF4AzToQUGEuLUBVZRAtmCaWVMXc7qDFXYVcmhcIt1m7z52fRKcBlXguT8kPMD9xiy0j8dWzgeqSi6oI19O1lemHwgCOWoESooKQIpeaj12vNswgx13maqySWMMEoZxaycXU--Wc8WoDM71A1iTXexv-echPWM4yJ6qlSbEFBD7Zh7WFO0DrZgWodJTATPc3ekcGtyPSh7tAgceTJUKOG8Ylj1Bn2P-OyZdnfhZ531W3cWNndCVaIBRGW5iG1dYSlQQi2dCWJ4gSqjITjyoiZNxAI6dC4h_EoDBlzKGfa0cxIkpkA5uxBcTAc6H1Agaq5IZWRLQJCpDIfeNoJBXUUFzRQLi7DaS5Bf5RSZPgpGTL2ze79ZPdlqOSy9TMrmfjGmXDhMpuTMpwnUvx9Af_uups0Dv4-9ARWOk3Pb9227w9hFcc39ya_7lWgOB3P9BEshx_T18n4OFOcLwpKww4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+State+Sum+for+the+Total+Face+Color+Polynomial&rft.jtitle=Journal+of+graph+theory&rft.au=Baldridge%2C+Scott&rft.au=Kauffman%2C+Louis+H.&rft.au=McCarty%2C+Ben&rft.date=2025-08-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=109&rft.issue=4&rft.spage=481&rft.epage=491&rft_id=info:doi/10.1002%2Fjgt.23239&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jgt_23239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon