Hybrid Levenberg–Marquardt and LSBoosting Ensemble Algorithms for Optimal Signal Attenuation Modeling and Coverage Analysis

ABSTRACT This paper proposes and engages the Levenberg–Marquardt algorithm method via regression to optimally model and predict real‐time signal strength values acquired via telecom software investigation tools in LTE cellular networks. To further improve the Levenberg–Marquardt method, which is som...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of communication systems Ročník 38; číslo 8
Hlavní autori: Isabona, Joseph, Imoize, Agbotiname Lucky, Lee, Cheng‐Chi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester Wiley Subscription Services, Inc 25.05.2025
Predmet:
ISSN:1074-5351, 1099-1131
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ABSTRACT This paper proposes and engages the Levenberg–Marquardt algorithm method via regression to optimally model and predict real‐time signal strength values acquired via telecom software investigation tools in LTE cellular networks. To further improve the Levenberg–Marquardt method, which is sometimes prone to parameter evaporation on high dimensional data with high bias or variance issues during the application, we explore the Least Square Boosting (LSBoosting) ensemble algorithms. The combined signal predictive modeling procedure is termed the hybrid LSBoost‐LM method. First, when the proposed hybrid LSBoost‐LM method was engaged for real‐time extrapolative signal analysis, the results displayed excellent root mean square error precision accuracies compared with two other standards, Bag‐LM and LM methods. As a case in point, the LSBoost‐LM method achieved 2.15, 3.44, 3.33, 1.31, and 2.19 dB RMSE values at different prediction study locations, which are relatively lower compared with the Bag‐LM and standard LM methods that achieved higher RMSE values of 3.38, 3.86, 4.07, 2.28, 3.98 dB and 5.57, 5.52, 5.14, 3.67, 4.56 dB, respectively. Secondly, applying the hybridized model produced up to 93.39% cell area coverage quality and 89.18% fringe cell area coverage quality across the eNodeB study locations. The proposed method can assist practicing RF network planners in realistic cell coverage quality estimation and analysis of related wireless networks.
AbstractList This paper proposes and engages the Levenberg–Marquardt algorithm method via regression to optimally model and predict real‐time signal strength values acquired via telecom software investigation tools in LTE cellular networks. To further improve the Levenberg–Marquardt method, which is sometimes prone to parameter evaporation on high dimensional data with high bias or variance issues during the application, we explore the Least Square Boosting (LSBoosting) ensemble algorithms. The combined signal predictive modeling procedure is termed the hybrid LSBoost‐LM method. First, when the proposed hybrid LSBoost‐LM method was engaged for real‐time extrapolative signal analysis, the results displayed excellent root mean square error precision accuracies compared with two other standards, Bag‐LM and LM methods. As a case in point, the LSBoost‐LM method achieved 2.15, 3.44, 3.33, 1.31, and 2.19 dB RMSE values at different prediction study locations, which are relatively lower compared with the Bag‐LM and standard LM methods that achieved higher RMSE values of 3.38, 3.86, 4.07, 2.28, 3.98 dB and 5.57, 5.52, 5.14, 3.67, 4.56 dB, respectively. Secondly, applying the hybridized model produced up to 93.39% cell area coverage quality and 89.18% fringe cell area coverage quality across the eNodeB study locations. The proposed method can assist practicing RF network planners in realistic cell coverage quality estimation and analysis of related wireless networks.
ABSTRACT This paper proposes and engages the Levenberg–Marquardt algorithm method via regression to optimally model and predict real‐time signal strength values acquired via telecom software investigation tools in LTE cellular networks. To further improve the Levenberg–Marquardt method, which is sometimes prone to parameter evaporation on high dimensional data with high bias or variance issues during the application, we explore the Least Square Boosting (LSBoosting) ensemble algorithms. The combined signal predictive modeling procedure is termed the hybrid LSBoost‐LM method. First, when the proposed hybrid LSBoost‐LM method was engaged for real‐time extrapolative signal analysis, the results displayed excellent root mean square error precision accuracies compared with two other standards, Bag‐LM and LM methods. As a case in point, the LSBoost‐LM method achieved 2.15, 3.44, 3.33, 1.31, and 2.19 dB RMSE values at different prediction study locations, which are relatively lower compared with the Bag‐LM and standard LM methods that achieved higher RMSE values of 3.38, 3.86, 4.07, 2.28, 3.98 dB and 5.57, 5.52, 5.14, 3.67, 4.56 dB, respectively. Secondly, applying the hybridized model produced up to 93.39% cell area coverage quality and 89.18% fringe cell area coverage quality across the eNodeB study locations. The proposed method can assist practicing RF network planners in realistic cell coverage quality estimation and analysis of related wireless networks.
Author Lee, Cheng‐Chi
Isabona, Joseph
Imoize, Agbotiname Lucky
Author_xml – sequence: 1
  givenname: Joseph
  surname: Isabona
  fullname: Isabona, Joseph
  organization: Federal University Lokoja
– sequence: 2
  givenname: Agbotiname Lucky
  orcidid: 0000-0001-8921-8353
  surname: Imoize
  fullname: Imoize, Agbotiname Lucky
  organization: University of Lagos Akoka
– sequence: 3
  givenname: Cheng‐Chi
  orcidid: 0000-0002-8918-1703
  surname: Lee
  fullname: Lee, Cheng‐Chi
  email: cclee@mail.fju.edu.tw
  organization: Asia University
BookMark eNp1kM1OAjEUhRuDiYAufINJXLkYaDudvyUiigmGBbqetNPbccjQQjtgZmHiO_iGPolF3Lo6N7nfObn3DFBPGw0IXRM8IhjTseTlKMU4T85Qn-A8DwmJSO84pyyMo5hcoIFza4xxRpO4jz7mnbC1DBZwAC3AVt-fX8_c7vbcyjbg2m9Wd8a4ttZVMNMONqKBYNJUxtbt28YFythguW3rDW-CVV1pL5O2Bb3nbW108GwkNEfvMWpqDmB55f0e61ztLtG54o2Dqz8doteH2ct0Hi6Wj0_TySIsac6SMJYyTQUXBMeCZkQwXGImsjgDoCxREucgk5KVVKUy4UqKMlUZy2ikmBIcaDREN6fcrTW7Pbi2WJu99Ue4IiI5ZTGJs8RTtyeqtMY5C6rYWv-X7QqCi2O7hW-3-G3Xs-MT-1430P0PFveT6cnxA_lEgH0
Cites_doi 10.1016/j.prime.2024.100737
10.5815/ijisa.2021.04.02
10.1007/s10957-020-01666-1
10.12720/jait.14.6.1436‐1442
10.1504/IJWMC.2013.054042
10.5815/ijcnis.2024.03.06
10.5815/ijisa.2021.03.04
10.1080/23311916.2018.1444345
10.4314/ijs.v21i1.4
10.1002/dac.5101
10.1109/GLOBECOM38437.2019.9014187
10.3390/s22103776
10.1017/CBO9780511841224
10.1080/10095020.2012.720457
10.9790/4861-0340818
10.3390/info14110621
10.1007/s11277‐018‐6061‐2
10.17485/ijst/2017/v10i5/90654
10.1109/LAWP.2024.3432578
10.1186/s44147-021-00035-7
10.5815/ijwmt.2020.05.02
10.3390/math9172176
10.1109/ACCESS.2020.2964103
10.3390/app12115713
10.5815/ijcnis.2022.03.05
10.1090/s0025‐5718‐2011‐02496‐8
10.1002/9781119331797
10.1109/WCNC.2008.202
10.1109/GLOBECOM42002.2020.9322089
10.1109/MVT.2019.2921627
10.46792/fuoyejet.v4i1.339
10.1109/NIGERCON54645.2022.9803167
10.1109/ACCESS.2019.2947009
10.1007/s11277-020-07550-5
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
8FD
JQ2
L7M
DOI 10.1002/dac.70096
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1131
EndPage n/a
ExternalDocumentID 10_1002_dac_70096
DAC70096
Genre researchArticle
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ESX
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGXDD
AIDQK
AIDYY
CITATION
I-F
O8X
7SP
8FD
ACUHS
JQ2
L7M
ID FETCH-LOGICAL-c2946-5dd77bab105b281b40c04b858ee246fd09ed6c4c2f7d6afdbc7f84823f4fbae23
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001472186200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1074-5351
IngestDate Fri Jul 25 12:15:57 EDT 2025
Thu Nov 27 00:16:19 EST 2025
Tue Apr 22 09:20:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2946-5dd77bab105b281b40c04b858ee246fd09ed6c4c2f7d6afdbc7f84823f4fbae23
Notes The authors received no specific funding for this work.
Funding
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8921-8353
0000-0002-8918-1703
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/dac.70096
PQID 3192451586
PQPubID 996367
PageCount 14
ParticipantIDs proquest_journals_3192451586
crossref_primary_10_1002_dac_70096
wiley_primary_10_1002_dac_70096_DAC70096
PublicationCentury 2000
PublicationDate 25 May 2025
PublicationDateYYYYMMDD 2025-05-25
PublicationDate_xml – month: 05
  year: 2025
  text: 25 May 2025
  day: 25
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle International journal of communication systems
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2019; 7
2021; 68
2012; 81
2019; 9
2013; 3
2019; 4
2023; 14
2019; 3
2013; 2
2012
2020; 185
2019; 14
2019; 104
2008
2005
2002
2022; 22
2012; 15
2020; 10
2024; 16
2013; 6
2020; 8
2021; 13
2014; 5
2018; 4
2022; 3
2022
2019; 41
2019; 21
2020
2017; 10
2024; 9
2022; 35
2019
2018
2011; 22
2017
2024; 23
2020; 114
2018; 13
e_1_2_8_29_1
e_1_2_8_24_1
Kolyaie S. (e_1_2_8_28_1) 2011; 22
e_1_2_8_47_1
e_1_2_8_25_1
Ebhota V. C. (e_1_2_8_43_1) 2019; 9
e_1_2_8_49_1
e_1_2_8_48_1
Popoola S. I. (e_1_2_8_26_1) 2014; 5
Isabona J. (e_1_2_8_33_1) 2019; 3
Adelabu M. A. (e_1_2_8_3_1) 2021; 13
e_1_2_8_5_1
Imoize A. L. (e_1_2_8_11_1) 2019; 41
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
Rappaport T. S. (e_1_2_8_2_1) 2002
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
Molisch A. F. (e_1_2_8_4_1) 2012
e_1_2_8_23_1
Ebhota V. C. (e_1_2_8_46_1) 2018; 13
e_1_2_8_41_1
Ebhota V. C. (e_1_2_8_13_1) 2018; 13
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
Ebhota V. C. (e_1_2_8_45_1) 2018; 13
e_1_2_8_19_1
Joseph I. (e_1_2_8_27_1) 2013; 2
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Ebhota V. C. (e_1_2_8_44_1) 2019; 9
Imoize A. L. (e_1_2_8_10_1) 2018; 4
e_1_2_8_32_1
e_1_2_8_31_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 22
  issue: 10
  year: 2022
  article-title: Machine Learning‐Based Boosted Regression Ensemble Combined With Hyperparameter Tuning for Optimal Adaptive Learning
  publication-title: Sensors
– volume: 13
  start-page: 13409
  issue: 18
  year: 2018
  end-page: 13420
  article-title: Investigating Signal Power Loss Prediction in a Metropolitan Island Using ADALINE and Multi‐Layer Perceptron Back Propagation Networks
  publication-title: International Journal of Applied Engineering Research
– volume: 13
  start-page: 1919
  issue: 7
  year: 2018
  end-page: 1934
  article-title: Base Line Knowledge on Propagation Modelling and Prediction Techniques in Wireless Communication Networks
  publication-title: Journal of Engineering and Applied Sciences
– year: 2005
– volume: 9
  start-page: 2176
  issue: 17
  year: 2021
  article-title: Adaptive Levenberg–Marquardt Algorithm: A New Optimization Strategy for Levenberg–Marquardt Neural Networks
  publication-title: Mathematics
– volume: 16
  start-page: 70
  issue: 3
  year: 2024
  end-page: 83
  article-title: Parameter Estimation of Cellular Communication Systems Models in Computational MATLAB Environment: A Systematic Solver‐Based Numerical Optimization Approaches
  publication-title: International Journal of Computer Network and Information Security
– volume: 13
  start-page: 35
  issue: 3
  year: 2021
  end-page: 42
  article-title: Application of Levenberg‐Marguardt Algorithm for Prime Radio Propagation Wave Attenuation Modelling in Typical Urban, Suburban and Rural Terrains
  publication-title: International Journal of Intelligent Systems and Applications
– volume: 10
  start-page: 13
  issue: 5
  year: 2020
  end-page: 24
  article-title: Adaptation of Propagation Model Parameters Toward Efficient Cellular Network Planning Using Robust LAD Algorithm
  publication-title: International Journal of Wireless and Microwave Technologies
– volume: 3
  start-page: 8
  issue: 4
  year: 2013
  end-page: 18
  article-title: Urban Area Path Loss Propagation Prediction and Optimisation Using Hata Model at 800MHz
  publication-title: IOSR Journal of Applied Physics (IOSR‐JAP)
– start-page: 1
  year: 2019
  end-page: 6
– volume: 2
  start-page: 96
  issue: 5
  year: 2013
  end-page: 106
  article-title: CDMA2000 Radio Measurements at 1.9 GHz and Comparison of Propagation Models in Three Built‐Up Cities of South‐South, Nigeria
  publication-title: American Journal of Engineering Research (AJER)
– volume: 13
  start-page: 31
  issue: 3
  year: 2021
  end-page: 39
  article-title: A Concealment Technique For Missing VoIP Packets Across Non‐Deterministic IP Networks
  publication-title: Journal of Telecommunication, Electronic and Computer Engineering (JTEC)
– volume: 15
  start-page: 199
  issue: 3
  year: 2012
  end-page: 206
  article-title: Field Strength Prediction of Mobile Communication Network Based on GIS
  publication-title: Geo‐spatial Information Science
– volume: 185
  start-page: 927
  issue: 3
  year: 2020
  end-page: 944
  article-title: Convergence and Complexity Analysis of a Levenberg–Marquardt Algorithm for Inverse Problems
  publication-title: Journal of Optimization Theory and Applications
– volume: 35
  year: 2022
  article-title: An Ensemble Machine Learning Approach for Enhanced Path Loss Predictions for 4G LTE Wireless Networks
  publication-title: International Journal of Communication Systems
– year: 2018
– volume: 104
  start-page: 935
  issue: 3
  year: 2019
  end-page: 948
  article-title: Environment‐Adaptation Based Hybrid Neural Network Predictor for Signal Propagation Loss Prediction in Cluttered and Open Urban Microcells
  publication-title: Wireless Personal Communications
– volume: 7
  start-page: 150462
  year: 2019
  end-page: 150483
  article-title: Determination of Neural Network Parameters for Path Loss Prediction in Very High Frequency Wireless Channel
  publication-title: IEEE Access
– volume: 114
  start-page: 3635
  year: 2020
  end-page: 3653
  article-title: Wavelet Generalized Regression Neural Network Approach for Robust Field Strength Prediction
  publication-title: Wireless Personal Communications
– year: 2012
– volume: 3
  start-page: 6
  issue: 1
  year: 2019
  end-page: 15
  article-title: Multi‐Resolution Based Discrete Wavelet Transform for Enhanced Signal Coverage Processing and Prediction Analysis
  publication-title: FUDMA Journal of Sciences (FJS)
– volume: 68
  start-page: 1
  issue: 1
  year: 2021
  end-page: 19
  article-title: Terrain‐Based Adaption of Propagation Model Loss Parameters Using Non‐Linear Square Regression
  publication-title: Journal of Engineering and Applied Science
– volume: 4
  start-page: 114
  issue: 2
  year: 2018
  end-page: 128
  article-title: Path Loss Characterization of Long Term Evolution Network for Lagos, Nigeria
  publication-title: Jordan Journal of Electrical Engineering
– volume: 21
  start-page: 39
  issue: 1
  year: 2019
  end-page: 60
  article-title: Investigation and Pathloss Modeling of Fourth Generation Long Term Evolution Network Along Major Highways in Lagos Nigeria
  publication-title: IFE Journal of Science
– volume: 8
  start-page: 7925
  year: 2020
  end-page: 7936
  article-title: Model‐Aided Deep Learning Method for Path Loss Prediction in Mobile Communication Systems at 2.6 GHz
  publication-title: IEEE Access
– volume: 4
  start-page: 155
  issue: 1
  year: 2019
  end-page: 159
  article-title: Investigating Predictive Capabilities of RBFNN, MLPNN and GRNN Models for LTE Cellular Network Radio Signal Power Datasets
  publication-title: FUOYE Journal of Engineering and Technology
– volume: 41
  start-page: 13
  issue: 2
  year: 2019
  end-page: 21
  article-title: Determination of Best‐Fit Propagation Models for Pathloss Prediction of a 4G LTE Network in Suburban and Urban Areas of Lagos, Nigeria
  publication-title: West Indian Journal of Engineering
– volume: 22
  start-page: 261
  year: 2011
  end-page: 270
  article-title: Analysis and Simulation of Wireless Signal Propagation Applying Geostatistical Interpolation Techniques
  publication-title: Archiwum Fotogrametrii, Kartografii i Teledetekcji
– volume: 13
  start-page: 14
  issue: 4
  year: 2021
  end-page: 23
  article-title: Field Electromagnetic Strength Variability Measurement and Adaptive Prognostic Approximation With Weighed Least Regression Approach in the Ultra‐High Radio Frequency Band
  publication-title: International Journal of Intelligent Systems & Applications
– volume: 3
  start-page: 63
  year: 2022
  end-page: 74
  article-title: Cascade Forward Neural Networks‐Based Adaptive Model for Real‐Time Adaptive Learning of Stochastic Signal Power Datasets
  publication-title: International Journal of Computer Network and Information Security
– volume: 9
  start-page: 36
  issue: 1
  year: 2019
  end-page: 45
  article-title: Effect of Learning Rate on GRNN and MLP for the Prediction of Signal Power Loss in Microcell Sub‐Urban Environment
  publication-title: International Journal on Communications Antenna and Propagation
– year: 2002
– volume: 9
  year: 2024
  article-title: A Novel Pathloss Prediction and Optimization Approach Using Deep Learning in Millimeter Wave Communication Systems
  publication-title: e‐Prime ‐ Advances in Electrical Engineering, Electronics and Energy
– volume: 10
  start-page: 1
  issue: 5
  year: 2017
  end-page: 9
  article-title: An Empirical Propagation Model for Path Loss Prediction at 2100MHz in a Dense Urban Environment
  publication-title: Indian Journal of Science and Technology
– volume: 81
  start-page: 447
  issue: 277
  year: 2012
  end-page: 466
  article-title: The Modified Levenberg‐Marquardt Method for Nonlinear Equations With Cubic Convergence
  publication-title: Mathematics of Computation
– year: 2022
– volume: 5
  start-page: 1212
  issue: 6
  year: 2014
  end-page: 1217
  article-title: Performance Evaluation of Radio Propagation Models on GSM Network in Urban Area of Lagos, Nigeria
  publication-title: International Journal of Scientific and Engineering Research
– volume: 6
  start-page: 165
  issue: 2
  year: 2013
  end-page: 174
  article-title: Propagation Measurements and Modelling at 1800 MHz in Lagos Nigeria
  publication-title: International Journal of Wireless and Mobile Computing
– volume: 14
  start-page: 60
  issue: 3
  year: 2019
  end-page: 69
  article-title: Model‐Aided Wireless Artificial Intelligence: Embedding Expert Knowledge in Deep Neural Networks for Wireless System Optimization
  publication-title: IEEE Vehicular Technology Magazine
– volume: 13
  start-page: 235
  issue: 4
  year: 2018
  end-page: 240
  article-title: Modelling, Simulation and Analysis of Signal Path Loss for 4G Cellular Network Planning
  publication-title: Journal of Engineering and Applied Sciences (JEAS)
– year: 2017
– start-page: 1
  year: 2020
  end-page: 6
– volume: 14
  start-page: 1436
  issue: 6
  year: 2023
  end-page: 1442
  article-title: Implementation of Quasi‐Newton Method Based on BFGS Algorithm for Identification and Optimization of Signal Propagation Loss Model Parameters
  publication-title: Journal of Advances in Information Technology
– start-page: 1120
  year: 2008
  end-page: 1125
– volume: 14
  issue: 11
  year: 2023
  article-title: Optimal Radio Propagation Modeling and Parametric Tuning Using Optimization Algorithms
  publication-title: Information
– volume: 23
  start-page: 3217
  issue: 10
  year: 2024
  end-page: 3221
  article-title: An Environment‐Adaptive Radio Propagation Path Loss Model With Ray‐Based Validation
  publication-title: IEEE Antennas and Wireless Propagation Letters
– volume: 9
  start-page: 43
  issue: 1
  year: 2019
  end-page: 54
  article-title: Investigation and Comparison of Generalization Ability of Multi‐Layer Perceptron and Radial Basis Function Artificial Neural Networks for Signal Power Loss Prediction
  publication-title: International Journal on Communications Antenna and Propagation
– volume: 13
  start-page: 13409
  issue: 18
  year: 2018
  ident: e_1_2_8_45_1
  article-title: Investigating Signal Power Loss Prediction in a Metropolitan Island Using ADALINE and Multi‐Layer Perceptron Back Propagation Networks
  publication-title: International Journal of Applied Engineering Research
– ident: e_1_2_8_18_1
  doi: 10.1016/j.prime.2024.100737
– ident: e_1_2_8_30_1
  doi: 10.5815/ijisa.2021.04.02
– ident: e_1_2_8_48_1
  doi: 10.1007/s10957-020-01666-1
– ident: e_1_2_8_22_1
  doi: 10.12720/jait.14.6.1436‐1442
– ident: e_1_2_8_25_1
  doi: 10.1504/IJWMC.2013.054042
– volume: 13
  start-page: 235
  issue: 4
  year: 2018
  ident: e_1_2_8_13_1
  article-title: Modelling, Simulation and Analysis of Signal Path Loss for 4G Cellular Network Planning
  publication-title: Journal of Engineering and Applied Sciences (JEAS)
– ident: e_1_2_8_21_1
  doi: 10.5815/ijcnis.2024.03.06
– ident: e_1_2_8_29_1
  doi: 10.5815/ijisa.2021.03.04
– ident: e_1_2_8_16_1
  doi: 10.1080/23311916.2018.1444345
– volume: 2
  start-page: 96
  issue: 5
  year: 2013
  ident: e_1_2_8_27_1
  article-title: CDMA2000 Radio Measurements at 1.9 GHz and Comparison of Propagation Models in Three Built‐Up Cities of South‐South, Nigeria
  publication-title: American Journal of Engineering Research (AJER)
– ident: e_1_2_8_14_1
  doi: 10.4314/ijs.v21i1.4
– ident: e_1_2_8_17_1
  doi: 10.1002/dac.5101
– volume: 41
  start-page: 13
  issue: 2
  year: 2019
  ident: e_1_2_8_11_1
  article-title: Determination of Best‐Fit Propagation Models for Pathloss Prediction of a 4G LTE Network in Suburban and Urban Areas of Lagos, Nigeria
  publication-title: West Indian Journal of Engineering
– ident: e_1_2_8_39_1
  doi: 10.1109/GLOBECOM38437.2019.9014187
– ident: e_1_2_8_8_1
  doi: 10.3390/s22103776
– ident: e_1_2_8_5_1
  doi: 10.1017/CBO9780511841224
– ident: e_1_2_8_23_1
  doi: 10.1080/10095020.2012.720457
– ident: e_1_2_8_32_1
  doi: 10.9790/4861-0340818
– ident: e_1_2_8_20_1
  doi: 10.3390/info14110621
– ident: e_1_2_8_34_1
  doi: 10.1007/s11277‐018‐6061‐2
– volume: 5
  start-page: 1212
  issue: 6
  year: 2014
  ident: e_1_2_8_26_1
  article-title: Performance Evaluation of Radio Propagation Models on GSM Network in Urban Area of Lagos, Nigeria
  publication-title: International Journal of Scientific and Engineering Research
– volume-title: Wireless Communications: Principles and Applications
  year: 2002
  ident: e_1_2_8_2_1
– ident: e_1_2_8_7_1
  doi: 10.17485/ijst/2017/v10i5/90654
– ident: e_1_2_8_19_1
  doi: 10.1109/LAWP.2024.3432578
– volume: 9
  start-page: 43
  issue: 1
  year: 2019
  ident: e_1_2_8_43_1
  article-title: Investigation and Comparison of Generalization Ability of Multi‐Layer Perceptron and Radial Basis Function Artificial Neural Networks for Signal Power Loss Prediction
  publication-title: International Journal on Communications Antenna and Propagation
– volume: 4
  start-page: 114
  issue: 2
  year: 2018
  ident: e_1_2_8_10_1
  article-title: Path Loss Characterization of Long Term Evolution Network for Lagos, Nigeria
  publication-title: Jordan Journal of Electrical Engineering
– ident: e_1_2_8_35_1
  doi: 10.1186/s44147-021-00035-7
– ident: e_1_2_8_31_1
  doi: 10.5815/ijwmt.2020.05.02
– volume: 3
  start-page: 6
  issue: 1
  year: 2019
  ident: e_1_2_8_33_1
  article-title: Multi‐Resolution Based Discrete Wavelet Transform for Enhanced Signal Coverage Processing and Prediction Analysis
  publication-title: FUDMA Journal of Sciences (FJS)
– volume: 9
  start-page: 36
  issue: 1
  year: 2019
  ident: e_1_2_8_44_1
  article-title: Effect of Learning Rate on GRNN and MLP for the Prediction of Signal Power Loss in Microcell Sub‐Urban Environment
  publication-title: International Journal on Communications Antenna and Propagation
– ident: e_1_2_8_49_1
  doi: 10.3390/math9172176
– ident: e_1_2_8_37_1
  doi: 10.1109/ACCESS.2020.2964103
– ident: e_1_2_8_12_1
  doi: 10.3390/app12115713
– ident: e_1_2_8_40_1
  doi: 10.5815/ijcnis.2022.03.05
– ident: e_1_2_8_47_1
  doi: 10.1090/s0025‐5718‐2011‐02496‐8
– ident: e_1_2_8_9_1
  doi: 10.1002/9781119331797
– ident: e_1_2_8_24_1
  doi: 10.1109/WCNC.2008.202
– volume: 13
  start-page: 31
  issue: 3
  year: 2021
  ident: e_1_2_8_3_1
  article-title: A Concealment Technique For Missing VoIP Packets Across Non‐Deterministic IP Networks
  publication-title: Journal of Telecommunication, Electronic and Computer Engineering (JTEC)
– volume: 22
  start-page: 261
  year: 2011
  ident: e_1_2_8_28_1
  article-title: Analysis and Simulation of Wireless Signal Propagation Applying Geostatistical Interpolation Techniques
  publication-title: Archiwum Fotogrametrii, Kartografii i Teledetekcji
– ident: e_1_2_8_36_1
  doi: 10.1109/GLOBECOM42002.2020.9322089
– ident: e_1_2_8_38_1
  doi: 10.1109/MVT.2019.2921627
– ident: e_1_2_8_42_1
  doi: 10.46792/fuoyejet.v4i1.339
– volume-title: Wireless Communications
  year: 2012
  ident: e_1_2_8_4_1
– ident: e_1_2_8_6_1
  doi: 10.1109/NIGERCON54645.2022.9803167
– ident: e_1_2_8_15_1
  doi: 10.1109/ACCESS.2019.2947009
– ident: e_1_2_8_41_1
  doi: 10.1007/s11277-020-07550-5
– volume: 13
  start-page: 1919
  issue: 7
  year: 2018
  ident: e_1_2_8_46_1
  article-title: Base Line Knowledge on Propagation Modelling and Prediction Techniques in Wireless Communication Networks
  publication-title: Journal of Engineering and Applied Sciences
SSID ssj0008265
Score 2.3634028
Snippet ABSTRACT This paper proposes and engages the Levenberg–Marquardt algorithm method via regression to optimally model and predict real‐time signal strength...
This paper proposes and engages the Levenberg–Marquardt algorithm method via regression to optimally model and predict real‐time signal strength values...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
cell coverage area
Cellular communication
fringe cell coverage
Levenberg–Marquardt algorithm
LSBoost ensemble
Optimization
path loss
Prediction models
Regression models
Signal analysis
signal path loss model
Signal strength
Software
Wireless networks
Title Hybrid Levenberg–Marquardt and LSBoosting Ensemble Algorithms for Optimal Signal Attenuation Modeling and Coverage Analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.70096
https://www.proquest.com/docview/3192451586
Volume 38
WOSCitedRecordID wos001472186200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1131
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008265
  issn: 1074-5351
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGG4QPOjBbyOKpjEevCyOfmwlnpCPcEA0IobbsnYtksBQNk08mPgf_If-EtuNAR5MTLwt6dZ36fvR523e9ykAZ0wiXqZMWKTMlEUw4hYXkloOFY5jcyxU0kj70HY7HdbvV25z4DLrhUn5IeYHbsYzknhtHNzn0cWCNDTQ8lyDwFdAwTRV6cyrUL9r9trzQKyRM81KDimm5YxYyEYX849_bkcLjLmMVJOtprn5r5_cAhszhAmrqUlsg5wMd8D6Eu_gLnhvvZlGLdg29E2mwOvr4_Panz4bc4mhH-qR7tVkEpmSaNgIIznmIwmro8FkOowfxxHUSBfe6GAz1oK6w0EiL9boO-UNh-aCNdPmnkxVM0WiOmrBjP9kD_Sajftay5rdw2AJVCGORYPAdbnPNRTjSMNcYgubcEaZlIg4KrArMnAEEUi5geOrgAtXMcIQVkRxXyK8D_LhJJQHAFLsBIZzkGBCifKlL4nEUumsiSjMXFUEp5k6vKeUbsNLiZWRp9fSS9ayCEqZoryZx0UeNpmkBmdMD58nKvl9Aq9erSUPh39_9QisIXP1r00tREsgH09f5DFYFa_xMJqezEzvGwLR3vc
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD5iZdLGwy7ANBhj1sQDLxGpb3ElXrpC1WlpN60U9S2KHburRBNoAtIeJvEf9g_3S2bnUuABadLeIjnxiXwu_myd8x2AA6GxbDOhPNoWxqMES08qzTzOFOe-JMqUhbTnYTAaiem0820NjptamIofYnXh5jyjjNfOwd2F9NEda2hiBQYOgj-BdcpJIFqwfvK9PwlXkdhCZ9bkHDLC2g2zkI-PVh8_3I_uQOZ9qFruNf2X__eXr-BFjTFRtzKK17Cm003YuMc8uAW_Bj9dqRYKHYGTS_H6c_t7GC-vnMEUKE7tyPhTluUuKRqdprleyAuNuhezbDkvfixyZLEu-mrDzcIKGs9npbzC4u-KORy5Fmuu0L2cqufSRG3cQg0DyjZM-qdnvYFXd2LwFO5Q7rEkCQIZSwvGJLZAl_rKp1IwoTWm3CR-RydcUYVNkPDYJFIFRlCBiaFGxhqTN9BKs1S_BcQITxzrICWUURPrWFNNtLHnJmqICMwOfGz0EV1WhBtRRa2MI7uWUbmWO7DXaCqqfS6PiDtLWngm7PBhqZPHJ4hOur3yYfffX_0AzwZnwzAKP4--vIPn2DUC9pmH2R60iuW1fg9P1U0xz5f7tR3-BVnc4uc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-NAFD64VRZ98LaK13UQH3wJpnNJpuBLbS0u1ire8C1kbrVgU22i4IPgf_Af-kucSZqqDwsL-xaYZE6Yc5lvhnO-A7DDNRZVxqVHq9x4lGDhCamZFzAZBL4g0uSFtNftsNPhNze1swnYL2thCn6I8YWb84w8XjsH1_fK7H2yhiorMHQQ_AdMUlZjtAKTzfPWVXsciS10ZmXOISOsWjIL-Xhv_PH3_egTZH6Fqvle05r7v7-ch9kRxkT1wigWYEInizDzhXnwF7wcPbtSLdR2BE4uxev99e0kHj44g8lQnNiRi4PBIHVJ0egwSXVf3GlUv-sOhr3stp8ii3XRqQ03fSvootfN5WUWfxfM4ci1WHOF7vlUDZcmauMWKhlQluCqdXjZOPJGnRg8iWs08JhSYShiYcGYwBboUl_6VHDGtcY0MMqvaRVIKrEJVRAbJWRoOOWYGGpErDFZhkoySPQKIEYC5VgHKaGMmljHmmqijT03UUN4aFZhu9RHdF8QbkQFtTKO7FpG-VquwkapqWjkc2lE3FnSwjNuh3dznfx9gqhZb-QPa__-6hb8PGu2ovafzvE6TGPXB9hnHmYbUMmGj3oTpuRT1kuHv0dm-AEQ_-Ji
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Levenberg%E2%80%93Marquardt+and+LSBoosting+Ensemble+Algorithms+for+Optimal+Signal+Attenuation+Modeling+and+Coverage+Analysis&rft.jtitle=International+journal+of+communication+systems&rft.au=Isabona%2C+Joseph&rft.au=Agbotiname%2C+Lucky+Imoize&rft.au=Cheng%E2%80%90Chi+Lee&rft.date=2025-05-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=38&rft.issue=8&rft_id=info:doi/10.1002%2Fdac.70096&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon