A Validation Methodology for XAI Decision Support Systems Against Relational Domain Properties

ABSTRACT The global adoption of artificial intelligence (AI) has increased dramatically in recent years, becoming commonplace in many fields. Such a pervasiveness has led to changes in how AI is perceived, strengthening discussions on its societal consequences. Thus, a new class of requirements for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of software : evolution and process Jg. 37; H. 10
Hauptverfasser: De Angelis, Emanuele, De Angelis, Guglielmo, Mongelli, Maurizio, Proietti, Maurizio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester Wiley Subscription Services, Inc 01.10.2025
Schlagworte:
ISSN:2047-7473, 2047-7481
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract ABSTRACT The global adoption of artificial intelligence (AI) has increased dramatically in recent years, becoming commonplace in many fields. Such a pervasiveness has led to changes in how AI is perceived, strengthening discussions on its societal consequences. Thus, a new class of requirements for AI‐based solutions emerged. Broadly speaking, those on “explainability” aim to provide a transparent representation of the (often opaque) reasoning method that an AI‐based solution uses when prompted. This work presents a methodology for validating a class of explainable AI (XAI) models, called deterministic rule‐based models, which are used for expressing an explainable approximation of classifiers based on machine learning. The validation methodology combines logical deduction with constraint‐based reasoning in numerical domains, and it either succeeds or returns quantitative estimations of the invalid deviations found. This information allows us to assess the correctness of an XAI model, or in the case of deviations, to evaluate if it still can be deemed acceptable. The validation methodology has been applied to a simulation‐based study where the decision‐making process copes with the spread of SARS‐COV‐2 inside a railway station. The considered case study is a controlled but nontrivial example that shows the overall applicability of the methodology.
AbstractList The global adoption of artificial intelligence (AI) has increased dramatically in recent years, becoming commonplace in many fields. Such a pervasiveness has led to changes in how AI is perceived, strengthening discussions on its societal consequences. Thus, a new class of requirements for AI‐based solutions emerged. Broadly speaking, those on “explainability” aim to provide a transparent representation of the (often opaque) reasoning method that an AI‐based solution uses when prompted. This work presents a methodology for validating a class of explainable AI (XAI) models, called deterministic rule‐based models, which are used for expressing an explainable approximation of classifiers based on machine learning. The validation methodology combines logical deduction with constraint‐based reasoning in numerical domains, and it either succeeds or returns quantitative estimations of the invalid deviations found. This information allows us to assess the correctness of an XAI model, or in the case of deviations, to evaluate if it still can be deemed acceptable. The validation methodology has been applied to a simulation‐based study where the decision‐making process copes with the spread of SARS‐COV‐2 inside a railway station. The considered case study is a controlled but nontrivial example that shows the overall applicability of the methodology.
ABSTRACT The global adoption of artificial intelligence (AI) has increased dramatically in recent years, becoming commonplace in many fields. Such a pervasiveness has led to changes in how AI is perceived, strengthening discussions on its societal consequences. Thus, a new class of requirements for AI‐based solutions emerged. Broadly speaking, those on “explainability” aim to provide a transparent representation of the (often opaque) reasoning method that an AI‐based solution uses when prompted. This work presents a methodology for validating a class of explainable AI (XAI) models, called deterministic rule‐based models, which are used for expressing an explainable approximation of classifiers based on machine learning. The validation methodology combines logical deduction with constraint‐based reasoning in numerical domains, and it either succeeds or returns quantitative estimations of the invalid deviations found. This information allows us to assess the correctness of an XAI model, or in the case of deviations, to evaluate if it still can be deemed acceptable. The validation methodology has been applied to a simulation‐based study where the decision‐making process copes with the spread of SARS‐COV‐2 inside a railway station. The considered case study is a controlled but nontrivial example that shows the overall applicability of the methodology.
Author De Angelis, Emanuele
Proietti, Maurizio
Mongelli, Maurizio
De Angelis, Guglielmo
Author_xml – sequence: 1
  givenname: Emanuele
  surname: De Angelis
  fullname: De Angelis, Emanuele
  organization: IASI‐CNR
– sequence: 2
  givenname: Guglielmo
  orcidid: 0000-0002-1076-0076
  surname: De Angelis
  fullname: De Angelis, Guglielmo
  email: guglielmo.deangelis@iasi.cnr.it
  organization: IASI‐CNR
– sequence: 3
  givenname: Maurizio
  surname: Mongelli
  fullname: Mongelli, Maurizio
  organization: IEIIT‐CNR
– sequence: 4
  givenname: Maurizio
  surname: Proietti
  fullname: Proietti, Maurizio
  organization: IASI‐CNR
BookMark eNp1kMtOwzAQRS1UJErpgj-wxIpFW7_iJMuo5VGpFagFxArLie2SKomDnQrl70kbxI7ZzGjm3KvRvQSDylYagGuMphghMvOlm4YIBewMDAli4SRkER78zSG9AGPv96grTjosGIKPBL7JIleyyW0F17r5tMoWdtdCYx18T5ZwobPcH4_bQ11b18Bt6xtdepjsZF75Bm50cVLLAi5s2e3gs7O1dk2u_RU4N7LwevzbR-D1_u5l_jhZPT0s58lqkpGYsQlNAxIToxEJJctSGWlFU6ywYrEyUZCmzLDMqEhmkhsUUc6xJNwwqiLMaWboCNz0vrWzXwftG7G3B9e95AUlPOAYoyDuqNueypz13mkjapeX0rUCI3FMUHQJilOCHTvr2e-80O3_oNiuN73iB1lgdLo
Cites_doi 10.1007/978-3-540-78800-3_24
10.1016/J.COMCOM.2021.06.026
10.1145/1592434.1592438
10.1109/MS.1984.233702
10.1017/S1471068411000482
10.1007/978-3-642-21437-0_17
10.1109/TAI.2023.3323923
10.1109/TSMCB.2002.999805
10.1109/AITest58265.2023.00010
10.1007/978-3-319-23534-9_2
10.3389/fdata.2021.688969
10.1007/11731177_4
10.1016/0743‐1066(94)90033‐7
10.1145/2939672.2939778
10.1007/978-3-319-63387-9_5
10.1007/978-3-662-53413-7_8
10.1145/3236009
10.1016/j.jss.2022.111231
10.1145/2480362.2480713
10.1145/3143561
10.3390/make3030032
10.1145/3555803
10.1145/3583558
10.1145/41625.41635
10.1109/TAI.2024.3439048
10.1561/2500000051
10.1007/s10664‐024‐10565‐2
10.1109/TSE.2016.2532875
10.1007/978-1-4615-7288-6
10.1017/S1471068411000494
10.1007/978-3-642-83189-8
10.1017/S1471068421000211
10.1017/S1471068417000497
10.1007/978-981-19-6814-3
ContentType Journal Article
Copyright 2025 The Author(s). Journal of Software: Evolution and Process published by John Wiley & Sons Ltd.
2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Journal of Software: Evolution and Process published by John Wiley & Sons Ltd.
– notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/smr.70054
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2047-7481
EndPage n/a
ExternalDocumentID 10_1002_smr_70054
SMR70054
Genre article
GrantInformation_xml – fundername: Gruppo Nazionale per il Calcolo Scientifico INdAM
– fundername: POR FESR LAZIO 2014‐2020 – GRUPPI DI RICERCA 2020
  funderid: OPENNESS (N. A0375‐2020‐36616)
– fundername: Italian Recovery and Resilience Plan
  funderid: Future Artificial Intelligence Research (FAIR) (N. PE0000013)
GroupedDBID .3N
.4S
.GA
.Y3
05W
0R~
10A
1OC
24P
31~
33P
3SF
50Z
52O
52U
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABPVW
ACAHQ
ACBWZ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZFZN
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EDO
EJD
F00
F01
F04
G-S
G.N
GODZA
HGLYW
HZ~
I-F
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
O66
O9-
P2W
P2X
PQQKQ
Q.N
Q11
QB0
R.K
ROL
SUPJJ
TUS
W8V
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
WZISG
~WT
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2944-3b5292fe027a4cba8ed3b1d1d49df85bb4f4cfd8aca6f083661a26f43d8163cf3
IEDL.DBID 24P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001605462200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2047-7473
IngestDate Tue Oct 28 04:43:03 EDT 2025
Sat Nov 29 07:03:41 EST 2025
Tue Oct 28 09:52:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2944-3b5292fe027a4cba8ed3b1d1d49df85bb4f4cfd8aca6f083661a26f43d8163cf3
Notes This work was supported by the project OPENNESS (N. A0375‐2020‐36616) funded by POR FESR LAZIO 2014‐2020 – GRUPPI DI RICERCA 2020, Future Artificial Intelligence Research (FAIR) (N. PE0000013) funded by Italian Recovery and Resilience Plan, and Gruppo Nazionale per il Calcolo Scientifico INdAM.
Funding
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1076-0076
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmr.70054
PQID 3265611059
PQPubID 2034650
PageCount 21
ParticipantIDs proquest_journals_3265611059
crossref_primary_10_1002_smr_70054
wiley_primary_10_1002_smr_70054_SMR70054
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
20251001
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Journal of software : evolution and process
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 7
2009; 41
2021; 4
2023; 55
2021; 3
2011
2002; 32
2008
2024; 30
2006
1972
2024
2022; 22
2012; 12
2018; 18
2022; 187
2023
2021; 179
2024; 5
1994; 19
2022
2021
2020
1984; 1
1987
2019
2016; 42
2018
2017
2016
2018; 51
2015
2013
2018; 31
e_1_2_15_21_1
e_1_2_15_42_1
e_1_2_15_40_1
e_1_2_15_3_1
e_1_2_15_29_1
e_1_2_15_27_1
e_1_2_15_48_1
e_1_2_15_25_1
e_1_2_15_46_1
e_1_2_15_23_1
e_1_2_15_44_1
e_1_2_15_9_1
e_1_2_15_7_1
e_1_2_15_5_1
Lundberg S. M. (e_1_2_15_39_1) 2017
e_1_2_15_10_1
e_1_2_15_31_1
e_1_2_15_18_1
e_1_2_15_16_1
e_1_2_15_37_1
e_1_2_15_50_1
e_1_2_15_14_1
e_1_2_15_35_1
e_1_2_15_52_1
e_1_2_15_33_1
Enderton H. (e_1_2_15_22_1) 1972
e_1_2_15_19_1
e_1_2_15_20_1
e_1_2_15_43_1
e_1_2_15_41_1
Bohanec M. (e_1_2_15_12_1) 2021
e_1_2_15_28_1
e_1_2_15_2_1
e_1_2_15_26_1
e_1_2_15_24_1
e_1_2_15_47_1
e_1_2_15_45_1
e_1_2_15_8_1
Singh G. (e_1_2_15_49_1) 2018
e_1_2_15_6_1
e_1_2_15_4_1
Ribeiro M. T. (e_1_2_15_38_1) 2018
e_1_2_15_32_1
e_1_2_15_30_1
e_1_2_15_17_1
e_1_2_15_15_1
e_1_2_15_13_1
e_1_2_15_36_1
e_1_2_15_51_1
e_1_2_15_11_1
e_1_2_15_34_1
e_1_2_15_53_1
References_xml – volume: 32
  start-page: 281
  issue: 3
  year: 2002
  end-page: 295
  article-title: A Framework for Validation of Rule‐Based Systems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
– start-page: 191
  year: 2021
  end-page: 211
– volume: 4
  year: 2021
  article-title: Principles and Practice of Explainable Machine Learning
  publication-title: Frontiers in Big Data
– volume: 18
  start-page: 126
  issue: 2
  year: 2018
  end-page: 166
  article-title: Predicate Pairing for Program Verification
  publication-title: Theory and Practice of Logic Programming
– volume: 5
  start-page: 2627
  issue: 6
  year: 2024
  end-page: 2637
  article-title: Rule‐Based Out‐of‐Distribution Detection
  publication-title: IEEE Transactions on Artificial Intelligence
– start-page: 4768
  year: 2017
  end-page: 4777
– volume: 187
  year: 2022
  article-title: Discovering Boundary Values of Feature‐Based Machine Learning Classifiers Through Exploratory Datamorphic Testing
  publication-title: Journal of Systems and Software
– year: 1987
– volume: 31
  year: 2018
– start-page: 337
  year: 2008
  end-page: 340
– year: 2024
– start-page: 1
  year: 2023
  end-page: 8
– start-page: 200
  year: 2011
  end-page: 214
– start-page: 97
  year: 2017
  end-page: 117
– volume: 3
  start-page: 615
  issue: 3
  year: 2021
  end-page: 661
  article-title: Classification of Explainable Artificial Intelligence Methods Through Their Output Formats
  publication-title: Machine Learning and Knowledge Extraction
– volume: 7
  start-page: 1
  issue: 1–2
  year: 2021
  end-page: 157
  article-title: Introduction to Neural Network Verification
  publication-title: Foundations and Trends in Programming Languages
– start-page: 147
  year: 2016
  end-page: 169
– volume: 30
  start-page: 18
  issue: 1
  year: 2024
  article-title: How Do ML Practitioners Perceive Explainability? An Interview Study of Practices and Challenges
  publication-title: Empirical Software Engineering
– start-page: 24
  year: 2015
  end-page: 51
– volume: 42
  start-page: 805
  issue: 9
  year: 2016
  end-page: 824
  article-title: A Survey on Metamorphic Testing
  publication-title: IEEE Transactions on Software Engineering
– start-page: 23
  year: 2006
  end-page: 30
– volume: 51
  start-page: 1
  issue: 1
  year: 2018
  end-page: 27
  article-title: Metamorphic Testing: A Review of Challenges and Opportunities
  publication-title: ACM Computing Surveys
– volume: 12
  start-page: 35
  issue: 1–2
  year: 2012
  end-page: 66
  article-title: SICStus Prolog—The First 25 Years
  publication-title: Theory and Practice of Logic Programming
– volume: 51
  start-page: 1
  issue: 5
  year: 2018
  end-page: 42
  article-title: A Survey of Methods for Explaining Black Box Models
  publication-title: ACM Computing Surveys
– volume: 55
  start-page: 1
  issue: 13s
  year: 2023
  end-page: 42
  article-title: From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI
  publication-title: ACM Computing Surveys
– volume: 179
  start-page: 166
  year: 2021
  end-page: 174
  article-title: Design of Countermeasure to Packet Falsification in Vehicle Platooning by Explainable Artificial Intelligence
  publication-title: Computer Communications
– volume: 41
  start-page: 21:1
  issue: 4
  year: 2009
  end-page: 21:54
  article-title: Software Model Checking
  publication-title: ACM Computing Surveys
– volume: 22
  start-page: 974
  issue: 6
  year: 2022
  end-page: 1042
  article-title: Analysis and Transformation of Constrained Horn Clauses for Program Verification
  publication-title: Theory and Practice of Logic Programming
– year: 2022
– year: 2020
– year: 2023
– year: 1972
– volume: 12
  start-page: 67
  issue: 1–2
  year: 2012
  end-page: 96
  article-title: SWI‐Prolog
  publication-title: Theory and Practice of Logic Programming
– start-page: 1893
  year: 2013
  end-page: 1899
– volume: 19
  start-page: 503
  issue: 20
  year: 1994
  end-page: 581
  article-title: Constraint Logic Programming: A Survey
  publication-title: Journal of Logic Programming
– volume: 1
  start-page: 75
  issue: 1
  year: 1984
  end-page: 88
  article-title: Verifying and Validating Software Requirements and Design Specifications
  publication-title: IEEE Software
– start-page: 1527
  year: 2018
  end-page: 1535
– volume: 55
  start-page: 1
  issue: 9
  year: 2023
  end-page: 46
  article-title: Trustworthy AI: From Principles to Practices
  publication-title: ACM Computing Surveys
– start-page: 1135
  year: 2016
  end-page: 1144
– year: 2019
– volume: 5
  start-page: 4310
  issue: 9
  year: 2024
  end-page: 4314
  article-title: From Explainable Artificial Intelligence (xAI) to Understandable Artificial Intelligence (uAI)
  publication-title: IEEE Transactions on Artificial Intelligence
– start-page: 111
  year: 1987
  end-page: 119
– ident: e_1_2_15_32_1
– ident: e_1_2_15_53_1
  doi: 10.1007/978-3-540-78800-3_24
– ident: e_1_2_15_46_1
– ident: e_1_2_15_35_1
  doi: 10.1016/J.COMCOM.2021.06.026
– volume-title: A Mathematical Introduction to Logic
  year: 1972
  ident: e_1_2_15_22_1
– ident: e_1_2_15_4_1
– ident: e_1_2_15_16_1
  doi: 10.1145/1592434.1592438
– ident: e_1_2_15_37_1
  doi: 10.1109/MS.1984.233702
– ident: e_1_2_15_26_1
  doi: 10.1017/S1471068411000482
– ident: e_1_2_15_31_1
– start-page: 1527
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2018
  ident: e_1_2_15_38_1
– start-page: 191
  volume-title: From Data and Models to Decision Support Systems: Lessons and Advice for the Future
  year: 2021
  ident: e_1_2_15_12_1
– ident: e_1_2_15_27_1
  doi: 10.1007/978-3-642-21437-0_17
– ident: e_1_2_15_36_1
  doi: 10.1109/TAI.2023.3323923
– ident: e_1_2_15_41_1
  doi: 10.1109/TSMCB.2002.999805
– ident: e_1_2_15_29_1
– ident: e_1_2_15_3_1
– ident: e_1_2_15_28_1
– ident: e_1_2_15_47_1
  doi: 10.1109/AITest58265.2023.00010
– ident: e_1_2_15_9_1
– ident: e_1_2_15_17_1
  doi: 10.1007/978-3-319-23534-9_2
– ident: e_1_2_15_15_1
  doi: 10.3389/fdata.2021.688969
– volume-title: Advances in Neural Information Processing Systems
  year: 2018
  ident: e_1_2_15_49_1
– ident: e_1_2_15_21_1
  doi: 10.1007/11731177_4
– ident: e_1_2_15_20_1
  doi: 10.1016/0743‐1066(94)90033‐7
– ident: e_1_2_15_7_1
  doi: 10.1145/2939672.2939778
– ident: e_1_2_15_33_1
– ident: e_1_2_15_48_1
  doi: 10.1007/978-3-319-63387-9_5
– ident: e_1_2_15_51_1
  doi: 10.1007/978-3-662-53413-7_8
– ident: e_1_2_15_8_1
  doi: 10.1145/3236009
– ident: e_1_2_15_44_1
  doi: 10.1016/j.jss.2022.111231
– ident: e_1_2_15_11_1
  doi: 10.1145/2480362.2480713
– ident: e_1_2_15_43_1
  doi: 10.1145/3143561
– ident: e_1_2_15_14_1
  doi: 10.3390/make3030032
– ident: e_1_2_15_6_1
  doi: 10.1145/3555803
– ident: e_1_2_15_13_1
  doi: 10.1145/3583558
– ident: e_1_2_15_30_1
– ident: e_1_2_15_34_1
– ident: e_1_2_15_2_1
– ident: e_1_2_15_19_1
  doi: 10.1145/41625.41635
– ident: e_1_2_15_5_1
  doi: 10.1109/TAI.2024.3439048
– ident: e_1_2_15_45_1
  doi: 10.1561/2500000051
– ident: e_1_2_15_40_1
  doi: 10.1007/s10664‐024‐10565‐2
– ident: e_1_2_15_42_1
  doi: 10.1109/TSE.2016.2532875
– ident: e_1_2_15_24_1
  doi: 10.1007/978-1-4615-7288-6
– ident: e_1_2_15_25_1
  doi: 10.1017/S1471068411000494
– ident: e_1_2_15_10_1
– ident: e_1_2_15_23_1
  doi: 10.1007/978-3-642-83189-8
– start-page: 4768
  volume-title: NIPS'17
  year: 2017
  ident: e_1_2_15_39_1
– ident: e_1_2_15_18_1
  doi: 10.1017/S1471068421000211
– ident: e_1_2_15_52_1
  doi: 10.1017/S1471068417000497
– ident: e_1_2_15_50_1
  doi: 10.1007/978-981-19-6814-3
SSID ssj0000620545
Score 2.334107
Snippet ABSTRACT The global adoption of artificial intelligence (AI) has increased dramatically in recent years, becoming commonplace in many fields. Such a...
The global adoption of artificial intelligence (AI) has increased dramatically in recent years, becoming commonplace in many fields. Such a pervasiveness has...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Artificial intelligence
constraint logic programming
Decision support systems
Deviation
Explainable artificial intelligence
Machine learning
Methodology
Railway stations
Reasoning
rule‐based classifier
validation
Title A Validation Methodology for XAI Decision Support Systems Against Relational Domain Properties
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmr.70054
https://www.proquest.com/docview/3265611059
Volume 37
WOSCitedRecordID wos001605462200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2047-7481
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000620545
  issn: 2047-7473
  databaseCode: DRFUL
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NT8IwGMbfIHjwIn5GFEljPHiZbF23dfG0iEQTIASFcHJp185wAAxD_37bbgM9mJh4W7buI23f9bd37fMAXFOJpQwJ0b_-mUWEzS0qQmHZwk6xk_gJNaveJ71gMKDTaTiswF25FibXh9gk3HRkmPe1DnDGs_ZWNDSbr24DTRw7UHMcl2rfBkyGmwSL7WN1UE9hxFqNQGGzWyoL2bi9OfvneLSFzO-oasaabv1fT3kA-wVioijvE4dQkYsjqJf2DaiI5mN4jdBEUXhuqoT6xkraJNmRAlk0jZ5QpzDgQdr7U3E6KvTNUfTGZoorUTmVTt2us5yrfWiok_srrdJ6AuPuw8v9o1XYLVgJ1q3lcg-HOJXqQ5WRhDMqhcsd4QgSipR6nJOUJKmgLGF-qkWtfYdhPyWuoArqktQ9hepiuZBngNRBBSYeCynjhPuEeYHkXJV2ZRAIIhtwVVZ6_J6rasS5fjKOVY3FpsYa0CybIy4CK4sVbSri01DYgBtT8b9fIH7uj8zG-d-LXsAe1g6_ZrpeE6rr1Ye8hN3kcz3LVi3Tw1pQ64y6494XqP7VrA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMdfUEz04m8j_myMBy_T0ZWtS7wQkUAEQhAIJ5d27QwHwID69_vabaAHExNvy9b9yOt762dv7fcBXHNNtQ4ZM7_-hcOUKx2uQuW4yk1oOfZjble9D1tBp8NHo7BbgPt8LUyqD7FMuJnIsO9rE-AmIX23Ug1dTOa3gUGONSgydCP072KtVx-0ljkW16d42MxipEaQAMnZy8WFXHq3PP_nkLTizO-0aoeb-s7_HnQXtjPMJNXUL_agoKf7sJOXcCBZRB_AS5UMkcTTwkqkbctJ20Q7QZglo2qT1LIiPMTU_0RWJ5nGOam-ijGyJcmn0-HtarMJ7iNdk-CfG6XWQxjUH_sPDScrueDE1PSYJys0pInGj1XBYim4Vp4sq7JioUp4RUqWsDhRXMTCT4ywtV8W1E-YpziCXZx4R7A-nU31MRA8iHBSESEXkkmfiUqgpcTWng4CxXQJrnKrR2-pskaUaijTCC0WWYuV4CzvjygLrkWExInUZ8CwBDfW8r9fIHpu9-zGyd-bXsJmo99uRa1m5-kUtqip-Gun753B-vv8Q5_DRvz5Pl7MLzKH-wKsStmS
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NT8IwGMbfIBjjRfyMKGpjPHiZjK5sXeKFiEQiEIJCOLm0a2s48BFA_37bbgM9mJh4W7buI23f9bd37fMA3FCJpQwJMb_-mUOEyx0qQuG4wlW4Gvsxtaveh-2g26WjUdjLwX22FibRh1gn3Exk2Pe1CXA5F6qyUQ1dThZ3gUGOLSgQYyKTh0Kj3xy01zkW18f6sJnFiI0ggSZnLxMXcnFlff7PIWnDmd9p1Q43zeL_HnQf9lLMRPWkXxxATk4PoZhZOKA0oo_grY6GmsQTYyXUsXbSNtGONMyiUb2FGqkJDzL-n5rVUapxjurvbKzZEmXT6fTtGrOJ3od6JsG_MEqtxzBoPr4-PDmp5YITY9NiHq_hECupP1YZiTmjUni8KqqChELRGudEkVgJymLmKyNs7VcZ9hXxBNVgFyvvBPLT2VSeAtIHNZzUWEgZJ9wnrBZIznVpTwaBILIE11mtR_NEWSNKNJRxpGsssjVWgnLWHlEaXMtIE6emPgOGJbi1Nf_7BaKXTt9unP296BXs9BrNqN3qPp_DLjaGv3b2Xhnyq8WHvIDt-HM1Xi4u0_72BXCj2Q0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Validation+Methodology+for+XAI+Decision+Support+Systems+Against+Relational+Domain+Properties&rft.jtitle=Journal+of+software+%3A+evolution+and+process&rft.au=De%C2%A0Angelis%2C+Emanuele&rft.au=De%C2%A0Angelis%2C+Guglielmo&rft.au=Mongelli%2C+Maurizio&rft.au=Proietti%2C+Maurizio&rft.date=2025-10-01&rft.issn=2047-7473&rft.eissn=2047-7481&rft.volume=37&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmr.70054&rft.externalDBID=10.1002%252Fsmr.70054&rft.externalDocID=SMR70054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7473&client=summon