Optimal reactive operation of general topology supply chain and manufacturing networks under disruptions
Supply and manufacturing networks in the chemical industry involve diverse processing steps across different locations, rendering their operation vulnerable to disruptions from unplanned events. Optimal responses should consider factors such as product allocation, delayed shipments, and price renego...
Saved in:
| Published in: | AIChE journal Vol. 71; no. 7 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
01.07.2025
American Institute of Chemical Engineers |
| Subjects: | |
| ISSN: | 0001-1541, 1547-5905 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Supply and manufacturing networks in the chemical industry involve diverse processing steps across different locations, rendering their operation vulnerable to disruptions from unplanned events. Optimal responses should consider factors such as product allocation, delayed shipments, and price renegotiation, among other factors. In such context, we propose a multiperiod mixed‐integer linear programming model that integrates production, scheduling, shipping, and order management to minimize the financial impact of such disruptions. The model accommodates arbitrary supply chain topologies and incorporates various disruption scenarios, offering adaptability to real‐world complexities. A case study from the chemical industry demonstrates the scalability of the model under finer time discretization and explores the influence of disruption types and order management costs on optimal schedules. This approach provides a tractable, adaptable framework for developing responsive operational plans in supply chain and manufacturing networks under uncertainty. |
|---|---|
| AbstractList | Supply and manufacturing networks in the chemical industry involve diverse processing steps across different locations, rendering their operation vulnerable to disruptions from unplanned events. Optimal responses should consider factors such as product allocation, delayed shipments, and price renegotiation, among other factors. In such context, we propose a multiperiod mixed‐integer linear programming model that integrates production, scheduling, shipping, and order management to minimize the financial impact of such disruptions. The model accommodates arbitrary supply chain topologies and incorporates various disruption scenarios, offering adaptability to real‐world complexities. A case study from the chemical industry demonstrates the scalability of the model under finer time discretization and explores the influence of disruption types and order management costs on optimal schedules. This approach provides a tractable, adaptable framework for developing responsive operational plans in supply chain and manufacturing networks under uncertainty. |
| Author | Laird, Carl D. Grossmann, Ignacio E. Ovalle, Daniel Harshbarger, Kyle Pulsipher, Joshua L. Bury, Scott Ye, Yixin |
| Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0002-9337-521X surname: Ovalle fullname: Ovalle, Daniel organization: Carnegie Mellon University – sequence: 2 givenname: Joshua L. surname: Pulsipher fullname: Pulsipher, Joshua L. organization: University of Waterloo – sequence: 3 givenname: Yixin surname: Ye fullname: Ye, Yixin organization: Core R&D – sequence: 4 givenname: Kyle surname: Harshbarger fullname: Harshbarger, Kyle organization: Supply Chain Innovation – sequence: 5 givenname: Scott surname: Bury fullname: Bury, Scott organization: Core R&D – sequence: 6 givenname: Carl D. surname: Laird fullname: Laird, Carl D. organization: Carnegie Mellon University – sequence: 7 givenname: Ignacio E. surname: Grossmann fullname: Grossmann, Ignacio E. email: grossmann@cmu.edu organization: Carnegie Mellon University |
| BookMark | eNp1kE1PAjEURRuDiYAu_AdNXLkY6AfTaZeE-EFCwkbXTe10oDi0tZ2R8O8tjltXL_fl3PeSMwEj550B4B6jGUaIzJXVM8w5pVdgjMtFVZQClSMwRgjhIi_wDZikdMiJVJyMwX4bOntULYxG6c5-G-iDiaqz3kHfwJ1xObWw88G3fneGqQ-hPUO9V9ZB5Wp4VK5vcrWP1u2gM93Jx88Ee1ebCGubYh8ux9ItuG5Um8zd35yC9-ent9Vrsdm-rFfLTaGJWNCCas2YaDgrFRe14YYapvCi1A2qTM0Eq2uENCeEKCU4Z4IIwTE2pGIl1x8NnYKH4W6I_qs3qZMH30eXX0pKCBdU8Apl6nGgdPQpRdPIELOGeJYYyYtImUXKX5GZnQ_sybbm_D8ol-vV0PgB6vB4Gg |
| Cites_doi | 10.1287/mnsc.6.4.475 10.1016/j.cie.2015.12.029 10.1016/0098-1354(93)80015-F 10.1016/j.compchemeng.2012.06.012 10.1016/j.ejor.2004.01.046 10.1016/j.omega.2015.03.008 10.1002/9781119584445 10.1016/j.tre.2020.101922 10.1016/0098-1354(93)E0010-7 10.1002/nav.20385 10.1016/j.ijpe.2015.11.017 10.1016/j.compchemeng.2023.108567 10.1016/j.compchemeng.2021.107268 10.1080/0740817X.2015.1067735 10.1007/978-3-319-28752-2_14 10.1002/aic.14088 10.1016/S0377-2217(98)00186-6 10.1287/trsc.1040.0107 10.1021/acs.iecr.2c01641 10.1016/0098-1354(95)00219-7 10.1016/j.compchemeng.2005.02.023 10.1016/S0098-1354(03)00047-4 10.1287/mnsc.41.2.263 10.1109/ACC.2009.5160453 10.1021/ie800257x 10.1287/opre.16.1.122 10.1108/BIJ-07-2014-0072 10.1016/j.compchemeng.2010.06.011 10.1016/j.ijpe.2015.10.023 10.1021/ie5004174 10.1287/opre.1090.0801 10.1016/j.ejor.2012.06.027 10.1021/ie0100030 10.1021/acs.iecr.0c04638 10.1016/j.cie.2017.11.006 10.1080/07408170500216480 10.1108/13598541211227108 10.1016/j.ijdrr.2022.102983 10.1080/00207543.2015.1057296 10.1016/j.ifacol.2016.07.775 10.1007/978-3-030-68928-5 10.1016/j.trb.2009.09.004 10.1016/j.ejor.2009.06.011 10.1016/j.compchemeng.2012.06.038 10.1287/ijoc.1100.0414 10.1287/opre.37.4.565 10.1016/j.compchemeng.2015.03.015 10.1016/S0098-1354(00)00581-0 10.1016/j.compchemeng.2015.02.013 10.1287/mnsc.49.5.618.15147 10.1002/aic.11721 10.1016/j.omega.2014.06.002 10.1016/j.compchemeng.2022.107759 10.1287/mnsc.40.10.1262 10.1111/poms.12717 10.1007/s00170-004-2069-8 10.1023/A:1025154322278 10.1016/j.compchemeng.2021.107252 10.1007/s10479-020-03912-1 10.1021/ie020923y 10.1016/j.compchemeng.2024.108993 10.1021/ie030308 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers. 2025. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers. – notice: 2025. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI |
| DOI | 10.1002/aic.18833 |
| DatabaseName | Wiley Online Library Open Access CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1547-5905 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_aic_18833 AIC18833 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: Center for Advanced Process Decision‐making – fundername: Department of Chemical Engineering, Carnegie Mellon University |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHHS AAHQN AAIHA AAIKC AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJIA ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYN AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PHGZM PHGZT PMFND PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 S0X SAMSI SUPJJ TAE TN5 TUS UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION O8X PQGLB 7ST 7U5 8FD C1K L7M SOI |
| ID | FETCH-LOGICAL-c2943-3cc669f865a89de8e3e6a145cf07ed696dd00c8222aa98869299811e27658cbf3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001458123100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-1541 |
| IngestDate | Sat Aug 23 12:53:56 EDT 2025 Sat Nov 29 07:20:38 EST 2025 Mon Jun 02 09:36:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2943-3cc669f865a89de8e3e6a145cf07ed696dd00c8222aa98869299811e27658cbf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9337-521X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.18833 |
| PQID | 3228939870 |
| PQPubID | 7879 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_3228939870 crossref_primary_10_1002_aic_18833 wiley_primary_10_1002_aic_18833_AIC18833 |
| PublicationCentury | 2000 |
| PublicationDate | July 2025 2025-07-00 20250701 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: New York |
| PublicationTitle | AIChE journal |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc American Institute of Chemical Engineers |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: American Institute of Chemical Engineers |
| References | 2017; 2 2010; 58 2021; 67 2010; 57 1960; 6 2025; 195 2006; 38 2015; 76 2022; 23 2012; 17 1998; 111 2005; 26 2018; 43 2005; 29 2001; 40 2024; 182 2009; 55 2013; 59 1968; 16 2022; 161 2015; 81 2013; 51 2003; 49 2022; 75 2011; 23 2020; 136 1989; 37 2016; 49 2005; 39 2016; 48 2003; 42 1996; 20 2014; 53 2004; 43 2015; 56 2023; 52 2012; 223 2017; 26 2021; 148 2021; 147 2000; 24 2015; 53 2010; 203 2015; 52 2024; 53 2011; 35 2016; 93 2022; 319 2022; 49 1994; 40 2010; 44 1995; 41 1993; 17 2005; 167 2022; 61 2018; 115 2008; 47 2019 2003; 26 2003; 27 2016 1994; 18 2016; 171 2012; 47 2021; 60 2016; 23 2016; 172 e_1_2_12_4_1 Ovalle D (e_1_2_12_68_1) 2024 e_1_2_12_6_1 e_1_2_12_19_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_38_1 Ceccon F (e_1_2_12_65_1) 2022; 23 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_66_1 Ovalle D (e_1_2_12_49_1) 2023 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_64_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_47_1 e_1_2_12_62_1 e_1_2_12_28_1 e_1_2_12_31_1 e_1_2_12_52_1 Lara C (e_1_2_12_46_1) 2018 e_1_2_12_33_1 e_1_2_12_54_1 Rawlings JB (e_1_2_12_60_1) 2017 e_1_2_12_35_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_58_1 e_1_2_12_14_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_50_1 e_1_2_12_3_1 e_1_2_12_5_1 e_1_2_12_18_1 e_1_2_12_16_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_23_1 e_1_2_12_69_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 Bernal DE (e_1_2_12_53_1) 2022 e_1_2_12_61_1 e_1_2_12_40_1 e_1_2_12_27_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_15_1 e_1_2_12_13_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_9_1 |
| References_xml | – volume: 52 start-page: 201 year: 2015 end-page: 212 article-title: Centralization versus decentralization: Risk pooling, risk diversification, and supply chain disruptions publication-title: Omega – volume: 29 start-page: 1225 issue: 6 year: 2005 end-page: 1235 article-title: Process industry supply chains: Advances and challenges publication-title: Comput Chem Eng – volume: 39 start-page: 400 issue: 3 year: 2005 end-page: 416 article-title: Reliability models for facility location: the expected failure cost case publication-title: Transp Sci – volume: 47 start-page: 2 year: 2012 end-page: 18 article-title: Advances in mathematical programming models for enterprise‐wide optimization publication-title: Comput Chem Eng – start-page: 383 year: 2016 end-page: 414 – volume: 24 start-page: 2125 issue: 9–10 year: 2000 end-page: 2141 article-title: New algorithms for nonlinear generalized disjunctive programming publication-title: Comput Chem Eng – volume: 171 start-page: 116 year: 2016 end-page: 133 article-title: A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research publication-title: Int J Prod Econ – volume: 17 start-page: 211 issue: 2 year: 1993 end-page: 227 article-title: A general algorithm for short‐term scheduling of batch operations–I. MILP formulation publication-title: Comput Chem Eng – volume: 59 start-page: 3276 issue: 9 year: 2013 end-page: 3295 article-title: Systematic modeling of discrete‐continuous optimization models through generalized disjunctive programming publication-title: AIChE J – volume: 115 start-page: 109 year: 2018 end-page: 122 article-title: Supply Chain Resilience: Definitions and quantitative modelling approaches–A literature review publication-title: Comput Ind Eng – volume: 17 start-page: 263 issue: 3 year: 2012 end-page: 276 article-title: The impact of supply network characteristics on reliability publication-title: Int J Supply Chain Manag – volume: 58 start-page: 998 issue: 4‐part‐1 year: 2010 end-page: 1011 article-title: Reliable facility location design under the risk of disruptions publication-title: Oper Res – volume: 111 start-page: 423 issue: 3 year: 1998 end-page: 447 article-title: Strategic facility location: A review publication-title: Eur J Oper Res – volume: 48 start-page: 89 issue: 2 year: 2016 end-page: 109 article-title: OR/MS models for supply chain disruptions: A review publication-title: IIE Trans – volume: 41 start-page: 263 issue: 2 year: 1995 end-page: 281 article-title: Sensitivity analysis for base‐stock levels in multiechelon production‐inventory systems publication-title: Manag Sci – volume: 6 start-page: 475 issue: 4 year: 1960 end-page: 490 article-title: Optimal policies for a multi‐echelon inventory problem publication-title: Manag Sci – volume: 23 start-page: 1472 issue: 6 year: 2016 end-page: 1499 article-title: LARG index: A benchmarking tool for improving the leanness, agility, resilience and greenness of the automotive supply chain publication-title: Benchmarking – volume: 47 start-page: 7802 issue: 20 year: 2008 end-page: 7817 article-title: Mixed‐integer nonlinear programming models and algorithms for large‐scale supply chain design with stochastic inventory management publication-title: Ind Eng Chem Res – volume: 26 start-page: 1760 issue: 9 year: 2017 end-page: 1777 article-title: Heuristics for base‐stock levels in multi‐echelon distribution networks publication-title: Prod Oper Manag – volume: 203 start-page: 283 issue: 2 year: 2010 end-page: 293 article-title: The design of robust value‐creating supply chain networks: A critical review publication-title: Eur J Oper Res – volume: 42 start-page: 3056 issue: 13 year: 2003 end-page: 3074 article-title: New general continuous‐time state‐task network formulation for short‐term scheduling of multipurpose batch plants publication-title: Ind Eng Chem Res – volume: 223 start-page: 644 issue: 3 year: 2012 end-page: 658 article-title: Scenario‐based supply chain network risk modeling publication-title: Eur J Oper Res – volume: 52 start-page: 1861 year: 2023 end-page: 1866 – volume: 26 start-page: 83 issue: 1 year: 2003 end-page: 100 article-title: Generalized convex disjunctive programming: Nonlinear convex hull relaxation publication-title: Comput Optim Appl – volume: 26 start-page: 1184 issue: 9 year: 2005 end-page: 1192 article-title: Adaptive inventory control models for supply chain management publication-title: Int J Adv Manuf Technol – volume: 136 year: 2020 article-title: Predicting the impacts of epidemic outbreaks on global supply chains: A simulation‐based analysis on the coronavirus outbreak (COVID‐19/SARS‐CoV‐2) case publication-title: Transp Res E Logist Transp Rev – volume: 27 start-page: 1201 issue: 8–9 year: 2003 end-page: 1218 article-title: A model predictive control strategy for supply chain optimization publication-title: Comput Chem Eng – volume: 53 start-page: 6736 issue: 22 year: 2015 end-page: 6751 article-title: On the quantification of operational supply chain resilience publication-title: Int J Prod Res – volume: 35 start-page: 554 issue: 3 year: 2011 end-page: 574 article-title: Long‐term scheduling of a single‐unit multi‐product continuous process to manufacture high performance glass publication-title: Comput Chem Eng – year: 2019 – volume: 182 start-page: 108567 year: 2024 article-title: Efficient computational strategies for a mathematical programming model for multi‐echelon inventory optimization based on the guaranteed‐service approach publication-title: Comput Chem Eng – volume: 93 start-page: 205 year: 2016 end-page: 214 article-title: Performance measures based optimization of supply chain network resilience: A NSGA‐II+ Co‐Kriging approach publication-title: Comput Ind Eng – volume: 43 start-page: 3695 issue: 14 year: 2004 end-page: 3713 article-title: Approximation to multistage stochastic optimization in multiperiod batch plant scheduling under demand uncertainty publication-title: Ind Eng Chem Res – volume: 49 start-page: 1448 issue: 12 year: 2016 end-page: 1453 article-title: Resilience and vulnerability in supply chain: Literature review publication-title: IFAC‐PapersOnLine – volume: 20 start-page: 959 issue: 8 year: 1996 end-page: 978 article-title: Logic‐based MINLP algorithms for the optimal synthesis of process networks publication-title: Comput Chem Eng – volume: 2 year: 2017 – volume: 37 start-page: 565 issue: 4 year: 1989 end-page: 579 article-title: Optimal inventory policies for assembly systems under random demands publication-title: Oper Res – volume: 38 start-page: 547 issue: 7 year: 2006 end-page: 564 article-title: Facility location under uncertainty: A review publication-title: IIE Trans – volume: 172 start-page: 110 year: 2016 end-page: 125 article-title: A comprehensive survey of guaranteed‐service models for multi‐echelon inventory optimization publication-title: Int J Prod Econ – volume: 43 start-page: 1261 year: 2018 end-page: 1262 – volume: 18 start-page: 563 issue: 7 year: 1994 end-page: 578 article-title: Modelling and computational techniques for logic based integer programming publication-title: Comput Chem Eng – volume: 195 year: 2025 article-title: Logic‐based discrete‐steepest descent: A solution method for process synthesis generalized disjunctive programs publication-title: Comput Chem Eng – volume: 40 start-page: 3585 issue: 16 year: 2001 end-page: 3604 article-title: Design of multi‐echelon supply chain networks under demand uncertainty publication-title: Ind Eng Chem Res – volume: 53 start-page: 1489 year: 2024 end-page: 1494 – volume: 319 start-page: 965 year: 2022 end-page: 1002 article-title: Supply chain disruptions and resilience: A major review and future research agenda publication-title: Ann Oper Res – volume: 147 start-page: 107252 year: 2021 article-title: Process systems engineering–the generation next? publication-title: Comput Chem Eng – volume: 40 start-page: 1262 issue: 10 year: 1994 end-page: 1275 article-title: Evaluating echelon stock (R, nQ) policies in serial production/inventory systems with stochastic demand publication-title: Manag Sci – volume: 75 year: 2022 article-title: Supply chain disruption during the COVID‐19 pandemic: Recognizing potential disruption management strategies publication-title: Int J Disaster Risk Reduct – volume: 23 start-page: 470 issue: 3 year: 2011 end-page: 482 article-title: The reliable facility location problem: Formulations, heuristics, and approximation algorithms publication-title: INFORMS J Comput – volume: 61 start-page: 16747 issue: 45 year: 2022 end-page: 16763 article-title: Mathematical programming approach to optimize tactical and operational supply chain decisions under disruptions publication-title: Ind Eng Chem Res – volume: 60 start-page: 1719 issue: 4 year: 2021 end-page: 1745 article-title: Modeling and analysis of organic waste management systems in centralized and decentralized supply chains using generalized disjunctive programming publication-title: Ind Eng Chem Res – volume: 49 start-page: 618 issue: 5 year: 2003 end-page: 638 article-title: Newsvendor bounds and heuristic for optimal policies in serial supply chains publication-title: Manag Sci – volume: 81 start-page: 153 year: 2015 end-page: 170 article-title: Supply chain design and optimization: Challenges and opportunities publication-title: Comput Chem Eng – volume: 167 start-page: 96 issue: 1 year: 2005 end-page: 115 article-title: A stochastic programming approach for supply chain network design under uncertainty publication-title: Eur J Oper Res – volume: 161 year: 2022 article-title: Integrating tactical planning, operational planning and scheduling using data‐driven feasibility analysis publication-title: Comput Chem Eng – volume: 53 start-page: 17240 issue: 44 year: 2014 end-page: 17251 article-title: Design of resilient supply chains with risk of facility disruptions publication-title: Ind Eng Chem Res – volume: 55 start-page: 931 issue: 4 year: 2009 end-page: 946 article-title: Risk management for a global supply chain planning under uncertainty: models and algorithms publication-title: AIChE J – volume: 148 year: 2021 article-title: A rolling horizon approach for scheduling of multiproduct batch production and maintenance using generalized disjunctive programming models publication-title: Comput Chem Eng – volume: 76 start-page: 98 year: 2015 end-page: 103 article-title: Improved Big‐M reformulation for generalized disjunctive programs publication-title: Comput Chem Eng – volume: 44 start-page: 535 issue: 4 year: 2010 end-page: 548 article-title: A continuum approximation approach to reliable facility location design under correlated probabilistic disruptions publication-title: Transp Res B Methodol – volume: 23 start-page: 15829 issue: 1 year: 2022 end-page: 15836 article-title: OMLT: Optimization & machine learning toolkit publication-title: J Mach Learn Res – volume: 67 year: 2021 – volume: 49 start-page: 1279 year: 2022 end-page: 1284 – volume: 57 start-page: 58 issue: 1 year: 2010 end-page: 70 article-title: A facility reliability problem: Formulation, properties, and algorithm publication-title: Naval Res Logist – volume: 16 start-page: 122 issue: 1 year: 1968 end-page: 141 article-title: METRIC: A multi‐echelon technique for recoverable item control publication-title: Oper Res – volume: 56 start-page: 53 year: 2015 end-page: 73 article-title: Resilience metrics in the assessment of complex supply‐chains performance operating under demand uncertainty publication-title: Omega – volume: 51 start-page: 4 year: 2013 end-page: 20 article-title: Integration of control theory and scheduling methods for supply chain management publication-title: Comput Chem Eng – ident: e_1_2_12_31_1 doi: 10.1287/mnsc.6.4.475 – ident: e_1_2_12_12_1 doi: 10.1016/j.cie.2015.12.029 – ident: e_1_2_12_58_1 doi: 10.1016/0098-1354(93)80015-F – volume: 23 start-page: 15829 issue: 1 year: 2022 ident: e_1_2_12_65_1 article-title: OMLT: Optimization & machine learning toolkit publication-title: J Mach Learn Res – ident: e_1_2_12_63_1 doi: 10.1016/j.compchemeng.2012.06.012 – ident: e_1_2_12_25_1 doi: 10.1016/j.ejor.2004.01.046 – ident: e_1_2_12_8_1 doi: 10.1016/j.omega.2015.03.008 – ident: e_1_2_12_4_1 doi: 10.1002/9781119584445 – ident: e_1_2_12_3_1 doi: 10.1016/j.tre.2020.101922 – start-page: 1261 volume-title: Computer Aided Chemical Engineering year: 2018 ident: e_1_2_12_46_1 – ident: e_1_2_12_70_1 – ident: e_1_2_12_55_1 doi: 10.1016/0098-1354(93)E0010-7 – ident: e_1_2_12_20_1 doi: 10.1002/nav.20385 – ident: e_1_2_12_38_1 doi: 10.1016/j.ijpe.2015.11.017 – ident: e_1_2_12_39_1 doi: 10.1016/j.compchemeng.2023.108567 – ident: e_1_2_12_47_1 doi: 10.1016/j.compchemeng.2021.107268 – ident: e_1_2_12_29_1 doi: 10.1080/0740817X.2015.1067735 – ident: e_1_2_12_67_1 doi: 10.1007/978-3-319-28752-2_14 – ident: e_1_2_12_56_1 doi: 10.1002/aic.14088 – ident: e_1_2_12_15_1 doi: 10.1016/S0377-2217(98)00186-6 – ident: e_1_2_12_17_1 doi: 10.1287/trsc.1040.0107 – ident: e_1_2_12_45_1 doi: 10.1021/acs.iecr.2c01641 – ident: e_1_2_12_51_1 doi: 10.1016/0098-1354(95)00219-7 – ident: e_1_2_12_40_1 doi: 10.1016/j.compchemeng.2005.02.023 – ident: e_1_2_12_44_1 doi: 10.1016/S0098-1354(03)00047-4 – ident: e_1_2_12_28_1 doi: 10.1287/mnsc.41.2.263 – ident: e_1_2_12_61_1 doi: 10.1109/ACC.2009.5160453 – ident: e_1_2_12_19_1 doi: 10.1021/ie800257x – ident: e_1_2_12_36_1 doi: 10.1287/opre.16.1.122 – start-page: 1279 volume-title: Computer Aided Chemical Engineering year: 2022 ident: e_1_2_12_53_1 – ident: e_1_2_12_10_1 doi: 10.1108/BIJ-07-2014-0072 – ident: e_1_2_12_62_1 doi: 10.1016/j.compchemeng.2010.06.011 – start-page: 1489 volume-title: Computer Aided Chemical Engineering year: 2024 ident: e_1_2_12_68_1 – ident: e_1_2_12_7_1 doi: 10.1016/j.ijpe.2015.10.023 – ident: e_1_2_12_24_1 doi: 10.1021/ie5004174 – ident: e_1_2_12_21_1 doi: 10.1287/opre.1090.0801 – ident: e_1_2_12_26_1 doi: 10.1016/j.ejor.2012.06.027 – ident: e_1_2_12_18_1 doi: 10.1021/ie0100030 – ident: e_1_2_12_48_1 doi: 10.1021/acs.iecr.0c04638 – ident: e_1_2_12_14_1 doi: 10.1016/j.cie.2017.11.006 – ident: e_1_2_12_16_1 doi: 10.1080/07408170500216480 – ident: e_1_2_12_9_1 doi: 10.1108/13598541211227108 – start-page: 1861 volume-title: Computer Aided Chemical Engineering year: 2023 ident: e_1_2_12_49_1 – ident: e_1_2_12_2_1 doi: 10.1016/j.ijdrr.2022.102983 – ident: e_1_2_12_11_1 doi: 10.1080/00207543.2015.1057296 – ident: e_1_2_12_6_1 doi: 10.1016/j.ifacol.2016.07.775 – ident: e_1_2_12_66_1 doi: 10.1007/978-3-030-68928-5 – ident: e_1_2_12_23_1 doi: 10.1016/j.trb.2009.09.004 – ident: e_1_2_12_27_1 doi: 10.1016/j.ejor.2009.06.011 – ident: e_1_2_12_42_1 doi: 10.1016/j.compchemeng.2012.06.038 – ident: e_1_2_12_22_1 doi: 10.1287/ijoc.1100.0414 – ident: e_1_2_12_34_1 doi: 10.1287/opre.37.4.565 – ident: e_1_2_12_43_1 doi: 10.1016/j.compchemeng.2015.03.015 – ident: e_1_2_12_52_1 doi: 10.1016/S0098-1354(00)00581-0 – ident: e_1_2_12_64_1 doi: 10.1016/j.compchemeng.2015.02.013 – ident: e_1_2_12_32_1 doi: 10.1287/mnsc.49.5.618.15147 – ident: e_1_2_12_5_1 doi: 10.1002/aic.11721 – ident: e_1_2_12_35_1 doi: 10.1016/j.omega.2014.06.002 – ident: e_1_2_12_69_1 doi: 10.1016/j.compchemeng.2022.107759 – ident: e_1_2_12_30_1 doi: 10.1287/mnsc.40.10.1262 – ident: e_1_2_12_37_1 doi: 10.1111/poms.12717 – ident: e_1_2_12_33_1 doi: 10.1007/s00170-004-2069-8 – ident: e_1_2_12_50_1 doi: 10.1023/A:1025154322278 – ident: e_1_2_12_41_1 doi: 10.1016/j.compchemeng.2021.107252 – ident: e_1_2_12_13_1 doi: 10.1007/s10479-020-03912-1 – ident: e_1_2_12_57_1 doi: 10.1021/ie020923y – volume-title: Model Predictive Control: Theory, Computation, and Design year: 2017 ident: e_1_2_12_60_1 – ident: e_1_2_12_54_1 doi: 10.1016/j.compchemeng.2024.108993 – ident: e_1_2_12_59_1 doi: 10.1021/ie030308 |
| SSID | ssj0012782 |
| Score | 2.4674242 |
| Snippet | Supply and manufacturing networks in the chemical industry involve diverse processing steps across different locations, rendering their operation vulnerable to... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Chemical industry Disruption disruptions Integer programming Linear programming Manufacturing mixed‐integer linear programming Networks operation scheduling Production scheduling Shipments supply chain optimization Supply chains Topology |
| Title | Optimal reactive operation of general topology supply chain and manufacturing networks under disruptions |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.18833 https://www.proquest.com/docview/3228939870 |
| Volume | 71 |
| WOSCitedRecordID | wos001458123100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1547-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012782 issn: 0001-1541 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7q46AH32J9sYgHL7HZTbPZxZNUi4JoEQu9hc1m1_bQVJpW8N-7j6atB0HwlsNmCZOZ2W-Sme8DuOQkY6SZRIFMuDYFSpIFTPEswFQZeCyUiLV0YhPJ8zPr9XinBjfVLIznh5h_cLOR4fK1DXCRlY0FaagYyGtspXJXYA3jiFndBtLszH8hkIR5qnBTLxucgCtaoZA05rf-PIwWCHMZp7qDpr39r0fcga0ZvkS33iF2oaaKPdhcYh3ch_6LSRNDs8jgRZft0OhDeUdAI43ePRE1mnj5hC9UWuHPLyT7YlAgUeRoKIqpHYhwE46o8I3kJbLjaGOUD8rx1HfKHEC3ff_WeghmgguBJLwZBZGUlHLNaCwYzxVTkaICN2Opw0TllNM8D0NpIYUQnDFqoBVnGCuSGBwjMx0dwmoxKtQRIK1insVCS-0qwIxJoiJKzd65CDNN63BRWT798LwaqWdQJqkxW-rMVofT6p2ks9AqU5OBDMbiJs_U4cpZ__cN0tvHlrs4_vvSE9ggVuPXteSewupkPFVnsC4_J8Z-587HzmHt7rXdffoG5k3Xgw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BQQIG3ohCAQsxsAQSJ3FsiaVCVK0opQNI3SLHsaFD06oPpP57_OiLAQmJLYNjWZd7fOfcfQdww3BGcZSEnkiY0glKknlUsswLiNTwmEseK2GHTSStFu10WHsNHua9MI4fYnHhZizD-mtj4OZC-n7JGsq74i4ws3LXYSPSUcZoOY7ai38IOKGOK1wnzBooBHNeIR_fL179GY2WEHMVqNpIU9v73xn3YXeGMFHVqcQBrMniEHZWeAeP4PNVO4qeXqQRo_V3qD-QThVQX6EPR0WNxm6AwhSNzOjPKRKfvFsgXuSox4uJaYmwPY6ocKXkI2Qa0oYo746GE1crcwzvtae3x7o3G7ngCcyi0AuFIIQpSmJOWS6pDCXhQRQL5ScyJ4zkue8LAyo4Z5QSDa4YDQKJE41kRKbCEygV_UKeAlIyZlnMlVA2B8yowDIkRO-dcz9TpAzXc9GnA8eskToOZZxqsaVWbGWozD9KOjOuUap9kEZZTHuaMtxa8f--QVptPNqHs78vvYKt-ttLM202Ws_nsI3NxF9boFuB0ng4kRewKb7GWpaXVuG-Afmz2c4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qFdGDb7E-F_HgJTbZNJtd8CKtxWKpRSz0FjabXduDaelD8N-7j748CIK3HDZLmMzMfpPMfB_ADcMpxZU49ETMlC5Q4tSjkqVeQKSGx1zySAkrNhG3WrTbZe0C3M9nYRw_xOKDm4kMm69NgMthpspL1lDeF3eB0cpdg_WKEZEpwnrttd5pLv4i4Jg6tnBdMmuoEMyZhXxcXtz88zxagsxVqGrPmvru_55yD3ZmGBM9OKfYh4LMD2B7hXnwEHovOlV86EUaM9qMhwZD6ZwBDRR6d2TUaOIkFL7Q2Ih_fiHR4_0c8TxDHzyfmqEIO-WIctdMPkZmJG2Esv54NHXdMkfQqT--VZ-8meiCJzCrhF4oBCFMURJxyjJJZSgJDyqRUH4sM8JIlvm-MLCCc0Yp0fCK0SCQONZYRqQqPIZiPsjlCSAlI5ZGXAllq8CUCixDQvTeGfdTRUpwPTd9MnTcGoljUcaJNltizVaC8_lLSWbhNU50FtI4i-lcU4Jba_7fN0geGlV7cfr3pVew2a7Vk2aj9XwGW9hI_toO3XMoTkZTeQEb4nOiTXk587hvupra5A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+reactive+operation+of+general+topology+supply+chain+and+manufacturing+networks+under+disruptions&rft.jtitle=AIChE+journal&rft.au=Ovalle%2C+Daniel&rft.au=Pulsipher%2C+Joshua+L.&rft.au=Ye%2C+Yixin&rft.au=Harshbarger%2C+Kyle&rft.date=2025-07-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=71&rft.issue=7&rft_id=info:doi/10.1002%2Faic.18833&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aic_18833 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |