Convolutional Sparse Coding Fast Approximation With Application to Seismic Reflectivity Estimation

In sparse coding, we attempt to extract features of input vectors, assuming that the data is inherently structured as a sparse superposition of basic building blocks. Similarly, neural networks perform a given task by learning features of the training dataset. Recently, both data- and model-driven f...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 19
Main Authors: Pereg, Deborah, Cohen, Israel, Vassiliou, Anthony A.
Format: Journal Article
Language:English
Published: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In sparse coding, we attempt to extract features of input vectors, assuming that the data is inherently structured as a sparse superposition of basic building blocks. Similarly, neural networks perform a given task by learning features of the training dataset. Recently, both data- and model-driven feature extracting methods have become extremely popular and have achieved remarkable results. Nevertheless, practical implementations are often too slow to be employed in real-life scenarios, especially for real-time applications. We propose a speed-up upgraded version of the classic iterative thresholding algorithm (ITA), which produces a good approximation of the convolutional sparse code (CSC) within 2-5 iterations. The speed advantage is gained mostly from the observation that most solvers are slowed down by inefficient global thresholding. The main idea is to normalize each data point by the local receptive field energy, before applying a threshold. This way, the natural inclination toward strong feature expressions is suppressed, so that one can rely on a global threshold that can be easily approximated, or learned during training. The proposed algorithm can be employed with a known predetermined dictionary, or with a trained dictionary. The trained version is implemented as a neural net designed as the unfolding of the proposed solver. The performance of the proposed solution is demonstrated via the seismic inversion problem in both synthetic and real data scenarios. We also provide theoretical guarantees for a stable support recovery, namely we prove that under certain conditions, the true support is perfectly recovered within the first iteration.
AbstractList In sparse coding, we attempt to extract features of input vectors, assuming that the data is inherently structured as a sparse superposition of basic building blocks. Similarly, neural networks perform a given task by learning features of the training dataset. Recently, both data- and model-driven feature extracting methods have become extremely popular and have achieved remarkable results. Nevertheless, practical implementations are often too slow to be employed in real-life scenarios, especially for real-time applications. We propose a speed-up upgraded version of the classic iterative thresholding algorithm (ITA), which produces a good approximation of the convolutional sparse code (CSC) within 2-5 iterations. The speed advantage is gained mostly from the observation that most solvers are slowed down by inefficient global thresholding. The main idea is to normalize each data point by the local receptive field energy, before applying a threshold. This way, the natural inclination toward strong feature expressions is suppressed, so that one can rely on a global threshold that can be easily approximated, or learned during training. The proposed algorithm can be employed with a known predetermined dictionary, or with a trained dictionary. The trained version is implemented as a neural net designed as the unfolding of the proposed solver. The performance of the proposed solution is demonstrated via the seismic inversion problem in both synthetic and real data scenarios. We also provide theoretical guarantees for a stable support recovery, namely we prove that under certain conditions, the true support is perfectly recovered within the first iteration.
Author Vassiliou, Anthony A.
Pereg, Deborah
Cohen, Israel
Author_xml – sequence: 1
  givenname: Deborah
  orcidid: 0000-0002-2453-6577
  surname: Pereg
  fullname: Pereg, Deborah
  email: deborahp@campus.technion.ac.il
  organization: Andrew and Erna Viterby Faculty of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Technion, Haifa, Israel
– sequence: 2
  givenname: Israel
  orcidid: 0000-0002-2556-3972
  surname: Cohen
  fullname: Cohen, Israel
  email: icohen@ee.technion.ac.il
  organization: Andrew and Erna Viterby Faculty of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Technion, Haifa, Israel
– sequence: 3
  givenname: Anthony A.
  orcidid: 0000-0001-9822-8094
  surname: Vassiliou
  fullname: Vassiliou, Anthony A.
  email: anthony@geoenergycorp.com
  organization: GeoEnergy, Inc., Houston, TX, USA
BookMark eNp9kM1Kw0AUhQepYFt9AHETcJ06_5NZllCrUBDaisswmUx0SpqJmWmxb29iigsXri4cznfvPWcCRrWrDQC3CM4QgvJhu1xvZhhiNCMIMgLhBRgjxpIYckpHYAyR5DFOJL4CE-93ECLKkBiDPHX10VWHYF2tqmjTqNabKHWFrd-jR-VDNG-a1n3Zveot0ZsNH71UWT0IwUUbY_3e6mhtysroYI82nKKFD2fmGlyWqvLm5jyn4PVxsU2f4tXL8jmdr2KNJQlxmfBCIKFFUjCMJOElljlDkOKiYBznSakFLHLOBCdUaFpSmSuaG8gKxJBKyBTcD3u7fz8Pxods5w5tl8pnmOOOgUSIzoUGl26d960ps6btHm1PGYJZX2XWV5n1VWbnKjtG_GG0DT_ZQqts9S95N5DWGPN7STJMmGTkG2_Gg8w
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2024_3357057
crossref_primary_10_1109_LGRS_2023_3245210
crossref_primary_10_1190_geo2022_0561_1
Cites_doi 10.1145/1553374.1553453
10.1109/TSP.2016.2552500
10.1137/080716542
10.1137/07070156X
10.1016/j.acha.2010.10.002
10.1190/1.1468627
10.1190/1.9781560801580
10.5555/3104322.3104374
10.1002/cpa.20042
10.1137/S0097539792240406
10.1137/050626090
10.1029/jb084ib09p04737
10.1109/TPAMI.2018.2883941
10.1016/j.sigpro.2018.08.013
10.1190/geo2011-0103.1
10.1017/cbo9781139168359
10.1016/j.sigpro.2017.02.016
10.1109/TIT.1982.1056496
10.1109/RADAR.2007.374203
10.1038/381607a0
10.1137/S003614450037906X
10.5555/2999134.2999257
10.1190/1.1527094
10.1190/1.1440921
10.1190/geo2014-0441.1
10.1109/ACCESS.2018.2882990
10.1109/TIT.2006.871582
10.1109/TMI.2021.3054167
10.1109/ICCV.2009.5459469
10.1109/TSP.2017.2733447
10.1007/978-1-4419-7011-4
10.5555/3454287.3455008
10.1109/5.726791
10.1190/1.1441816
10.1190/1.1512799
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2021.3105300
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 19
ExternalDocumentID 10_1109_TGRS_2021_3105300
9523595
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-f86d717c78d521936f29b51042dd562b8fc70db6576347c4f49ba4be05d151a83
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732905600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Tue Aug 26 15:40:26 EDT 2025
Sat Nov 29 02:50:15 EST 2025
Tue Nov 18 22:18:26 EST 2025
Wed Aug 27 03:00:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-f86d717c78d521936f29b51042dd562b8fc70db6576347c4f49ba4be05d151a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2556-3972
0000-0002-2453-6577
0000-0001-9822-8094
PQID 2623470377
PQPubID 85465
PageCount 19
ParticipantIDs proquest_journals_2623470377
crossref_primary_10_1109_TGRS_2021_3105300
ieee_primary_9523595
crossref_citationtrail_10_1109_TGRS_2021_3105300
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
Aberdam (ref17) 2020
ref2
Papyan (ref12) 2017; 18
ref1
ref39
ref16
ref38
ref19
ref18
ref23
ref26
ref25
ref20
Géron (ref24) 2017
Nguyen (ref8) 2010; 19
ref22
ref21
ref28
ref27
ref29
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref11
  doi: 10.1145/1553374.1553453
– ident: ref6
  doi: 10.1109/TSP.2016.2552500
– ident: ref15
  doi: 10.1137/080716542
– ident: ref25
  doi: 10.1137/07070156X
– ident: ref22
  doi: 10.1016/j.acha.2010.10.002
– ident: ref29
  doi: 10.1190/1.1468627
– ident: ref38
  doi: 10.1190/1.9781560801580
– ident: ref16
  doi: 10.5555/3104322.3104374
– ident: ref14
  doi: 10.1002/cpa.20042
– ident: ref21
  doi: 10.1137/S0097539792240406
– ident: ref23
  doi: 10.1137/050626090
– ident: ref30
  doi: 10.1029/jb084ib09p04737
– volume-title: Hands-on Machine Learning With Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
  year: 2017
  ident: ref24
– volume: 19
  start-page: 303
  issue: 4
  year: 2010
  ident: ref8
  article-title: High resolution seismic reflectivity inversion
  publication-title: J. Seismic Explor.
– ident: ref19
  doi: 10.1109/TPAMI.2018.2883941
– ident: ref34
  doi: 10.1016/j.sigpro.2018.08.013
– ident: ref9
  doi: 10.1190/geo2011-0103.1
– ident: ref31
  doi: 10.1017/cbo9781139168359
– ident: ref27
  doi: 10.1016/j.sigpro.2017.02.016
– ident: ref33
  doi: 10.1109/TIT.1982.1056496
– ident: ref5
  doi: 10.1109/RADAR.2007.374203
– ident: ref10
  doi: 10.1038/381607a0
– ident: ref1
  doi: 10.1137/S003614450037906X
– ident: ref32
  doi: 10.5555/2999134.2999257
– ident: ref35
  doi: 10.1190/1.1527094
– ident: ref7
  doi: 10.1190/1.1440921
– ident: ref28
  doi: 10.1190/geo2014-0441.1
– volume-title: arXiv:2001.08456
  year: 2020
  ident: ref17
  article-title: Ada-LISTA: Learned solvers adaptive to varying models
– ident: ref18
  doi: 10.1109/ACCESS.2018.2882990
– ident: ref4
  doi: 10.1109/TIT.2006.871582
– ident: ref20
  doi: 10.1109/TMI.2021.3054167
– ident: ref3
  doi: 10.1109/ICCV.2009.5459469
– ident: ref39
  doi: 10.1109/TSP.2017.2733447
– ident: ref2
  doi: 10.1007/978-1-4419-7011-4
– ident: ref37
  doi: 10.5555/3454287.3455008
– volume: 18
  start-page: 2887
  issue: 1
  year: 2017
  ident: ref12
  article-title: Convolutional neural networks analyzed via convolutional sparse coding
  publication-title: J. Mach. Learn. Res.
– ident: ref13
  doi: 10.1109/5.726791
– ident: ref26
  doi: 10.1190/1.1441816
– ident: ref36
  doi: 10.1190/1.1512799
SSID ssj0014517
Score 2.4041994
Snippet In sparse coding, we attempt to extract features of input vectors, assuming that the data is inherently structured as a sparse superposition of basic building...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Approximation
Approximation algorithms
Coding
Coherence
Convolution
Convolutional neural network (CNN)
convolutional sparse coding (CSC)
Data points
deep learning
Dictionaries
Encoding
Feature extraction
Glossaries
Image coding
Iterative methods
Mathematical analysis
Neural networks
Receptive field
Reflectance
seismic inversion
Seismic surveys
Solvers
sparse reflectivity
Training
Vectors
Title Convolutional Sparse Coding Fast Approximation With Application to Seismic Reflectivity Estimation
URI https://ieeexplore.ieee.org/document/9523595
https://www.proquest.com/docview/2623470377
Volume 60
WOSCitedRecordID wos000732905600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB42IYX00LzptknQIacQN7YsS9ZxWbLpoSwhm5DcjPUwNWzWy9oJ_fkdyco20FLIzQcNCH-jmfk0mhmAM9egxVBTRlkikKDkhkZKpiaqFJdKs1Qp7ZH-IabT_PFR3gzgYl0LY631j8_sN_fpc_mm0c_uquxSImvKZLYBG0LwvlZrnTFgWRJKo3mEJIKGDGYSy8u769sZMkGaIEFFnXPFbG98kB-q8pcl9u5lsvO-je3CpxBGklGP-x4M7GIfPr5pLrgPH_zjTt0egBo3i5egYig0WyKZtWTcOLdFJmXbkZHrLP6r7ssYyUPd_SSjP5lt0jVkZuv2qdbk1lZzbyMxeidXaB96mUO4n1zdjb9HYbZCpNHBd1GVc4NMTovcoAOXKa-oVHg-GTUGQyKVV1rERnGkIykTmlVMqpIpG2cGY4QyT49gc9Es7GcgKlXo9-Mk1yVlFedK6izWaUoV5bYs5RDi179d6NB43M2_mBeegMSycAAVDqAiADSE87XIsu-68b_FBw6R9cIAxhCOXyEtwrlsC4rRHkMjJ8SXf0t9hW3qChz8JcsxbHarZ3sCW_qlq9vVqVe53ybo08M
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6FtAh6KG8RoLCHnlAN9nr92GMUkVI1RIikKjfL-7CwBDHCJuLnM7vepEhFlXrzYUda-ZudmW9nZwbgq2nQoqjKvShIkKCkinqCh8orRMyFZKEQ0iI9Ssbj9PaWX3fg27IWRmttH5_pM_Npc_mqks_mquycI2uKeLQCHyLGqN9Way1zBiwKXHF07CGNoC6HGfj8fPr9ZoJckAZIUVHrTDnbGy9kx6r8ZYutgxlu_N_WNuGzCyRJv0V-Czp6tg2f3rQX3IZV-7xT1jsgBtVs7pQMhSaPSGc1GVTGcZFhXjekb3qLv5RtISP5XTZ3pP8nt02aikx0WT-Uktzo4t5aSYzfyQVaiFZmF34NL6aDS89NV_AkuvjGK9JYIZeTSarQhfMwLigXeEIZVQqDIpEWMvGViJGQhCyRrGBc5ExoP1IYJeRpuAfdWTXT-0BEKNDz-0Eqc8qKOBZcRr4MQyporPOc98Bf_O1MutbjZgLGfWYpiM8zA1BmAMocQD04XYo8tn03_rV4xyCyXOjA6MHRAtLMncw6oxjvMTRzSXLwvtQJrF1Or0bZ6Mf45yGsU1PuYK9cjqDbPD3rL_BRzpuyfjq26vcKU1rXCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Sparse+Coding+Fast+Approximation+With+Application+to+Seismic+Reflectivity+Estimation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Pereg%2C+Deborah&rft.au=Cohen%2C+Israel&rft.au=Vassiliou%2C+Anthony+A.&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1109%2FTGRS.2021.3105300&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2021_3105300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon