Convolutional Sparse Coding Fast Approximation With Application to Seismic Reflectivity Estimation
In sparse coding, we attempt to extract features of input vectors, assuming that the data is inherently structured as a sparse superposition of basic building blocks. Similarly, neural networks perform a given task by learning features of the training dataset. Recently, both data- and model-driven f...
Uložené v:
| Vydané v: | IEEE transactions on geoscience and remote sensing Ročník 60; s. 1 - 19 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In sparse coding, we attempt to extract features of input vectors, assuming that the data is inherently structured as a sparse superposition of basic building blocks. Similarly, neural networks perform a given task by learning features of the training dataset. Recently, both data- and model-driven feature extracting methods have become extremely popular and have achieved remarkable results. Nevertheless, practical implementations are often too slow to be employed in real-life scenarios, especially for real-time applications. We propose a speed-up upgraded version of the classic iterative thresholding algorithm (ITA), which produces a good approximation of the convolutional sparse code (CSC) within 2-5 iterations. The speed advantage is gained mostly from the observation that most solvers are slowed down by inefficient global thresholding. The main idea is to normalize each data point by the local receptive field energy, before applying a threshold. This way, the natural inclination toward strong feature expressions is suppressed, so that one can rely on a global threshold that can be easily approximated, or learned during training. The proposed algorithm can be employed with a known predetermined dictionary, or with a trained dictionary. The trained version is implemented as a neural net designed as the unfolding of the proposed solver. The performance of the proposed solution is demonstrated via the seismic inversion problem in both synthetic and real data scenarios. We also provide theoretical guarantees for a stable support recovery, namely we prove that under certain conditions, the true support is perfectly recovered within the first iteration. |
|---|---|
| AbstractList | In sparse coding, we attempt to extract features of input vectors, assuming that the data is inherently structured as a sparse superposition of basic building blocks. Similarly, neural networks perform a given task by learning features of the training dataset. Recently, both data- and model-driven feature extracting methods have become extremely popular and have achieved remarkable results. Nevertheless, practical implementations are often too slow to be employed in real-life scenarios, especially for real-time applications. We propose a speed-up upgraded version of the classic iterative thresholding algorithm (ITA), which produces a good approximation of the convolutional sparse code (CSC) within 2-5 iterations. The speed advantage is gained mostly from the observation that most solvers are slowed down by inefficient global thresholding. The main idea is to normalize each data point by the local receptive field energy, before applying a threshold. This way, the natural inclination toward strong feature expressions is suppressed, so that one can rely on a global threshold that can be easily approximated, or learned during training. The proposed algorithm can be employed with a known predetermined dictionary, or with a trained dictionary. The trained version is implemented as a neural net designed as the unfolding of the proposed solver. The performance of the proposed solution is demonstrated via the seismic inversion problem in both synthetic and real data scenarios. We also provide theoretical guarantees for a stable support recovery, namely we prove that under certain conditions, the true support is perfectly recovered within the first iteration. |
| Author | Vassiliou, Anthony A. Pereg, Deborah Cohen, Israel |
| Author_xml | – sequence: 1 givenname: Deborah orcidid: 0000-0002-2453-6577 surname: Pereg fullname: Pereg, Deborah email: deborahp@campus.technion.ac.il organization: Andrew and Erna Viterby Faculty of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Technion, Haifa, Israel – sequence: 2 givenname: Israel orcidid: 0000-0002-2556-3972 surname: Cohen fullname: Cohen, Israel email: icohen@ee.technion.ac.il organization: Andrew and Erna Viterby Faculty of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Technion, Haifa, Israel – sequence: 3 givenname: Anthony A. orcidid: 0000-0001-9822-8094 surname: Vassiliou fullname: Vassiliou, Anthony A. email: anthony@geoenergycorp.com organization: GeoEnergy, Inc., Houston, TX, USA |
| BookMark | eNp9kM1Kw0AUhQepYFt9AHETcJ06_5NZllCrUBDaisswmUx0SpqJmWmxb29iigsXri4cznfvPWcCRrWrDQC3CM4QgvJhu1xvZhhiNCMIMgLhBRgjxpIYckpHYAyR5DFOJL4CE-93ECLKkBiDPHX10VWHYF2tqmjTqNabKHWFrd-jR-VDNG-a1n3Zveot0ZsNH71UWT0IwUUbY_3e6mhtysroYI82nKKFD2fmGlyWqvLm5jyn4PVxsU2f4tXL8jmdr2KNJQlxmfBCIKFFUjCMJOElljlDkOKiYBznSakFLHLOBCdUaFpSmSuaG8gKxJBKyBTcD3u7fz8Pxods5w5tl8pnmOOOgUSIzoUGl26d960ps6btHm1PGYJZX2XWV5n1VWbnKjtG_GG0DT_ZQqts9S95N5DWGPN7STJMmGTkG2_Gg8w |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_TGRS_2024_3357057 crossref_primary_10_1109_LGRS_2023_3245210 crossref_primary_10_1190_geo2022_0561_1 |
| Cites_doi | 10.1145/1553374.1553453 10.1109/TSP.2016.2552500 10.1137/080716542 10.1137/07070156X 10.1016/j.acha.2010.10.002 10.1190/1.1468627 10.1190/1.9781560801580 10.5555/3104322.3104374 10.1002/cpa.20042 10.1137/S0097539792240406 10.1137/050626090 10.1029/jb084ib09p04737 10.1109/TPAMI.2018.2883941 10.1016/j.sigpro.2018.08.013 10.1190/geo2011-0103.1 10.1017/cbo9781139168359 10.1016/j.sigpro.2017.02.016 10.1109/TIT.1982.1056496 10.1109/RADAR.2007.374203 10.1038/381607a0 10.1137/S003614450037906X 10.5555/2999134.2999257 10.1190/1.1527094 10.1190/1.1440921 10.1190/geo2014-0441.1 10.1109/ACCESS.2018.2882990 10.1109/TIT.2006.871582 10.1109/TMI.2021.3054167 10.1109/ICCV.2009.5459469 10.1109/TSP.2017.2733447 10.1007/978-1-4419-7011-4 10.5555/3454287.3455008 10.1109/5.726791 10.1190/1.1441816 10.1190/1.1512799 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2021.3105300 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 19 |
| ExternalDocumentID | 10_1109_TGRS_2021_3105300 9523595 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c293t-f86d717c78d521936f29b51042dd562b8fc70db6576347c4f49ba4be05d151a83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732905600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Tue Aug 26 15:40:26 EDT 2025 Sat Nov 29 02:50:15 EST 2025 Tue Nov 18 22:18:26 EST 2025 Wed Aug 27 03:00:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-f86d717c78d521936f29b51042dd562b8fc70db6576347c4f49ba4be05d151a83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2556-3972 0000-0002-2453-6577 0000-0001-9822-8094 |
| PQID | 2623470377 |
| PQPubID | 85465 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2623470377 crossref_primary_10_1109_TGRS_2021_3105300 ieee_primary_9523595 crossref_citationtrail_10_1109_TGRS_2021_3105300 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 Aberdam (ref17) 2020 ref2 Papyan (ref12) 2017; 18 ref1 ref39 ref16 ref38 ref19 ref18 ref23 ref26 ref25 ref20 Géron (ref24) 2017 Nguyen (ref8) 2010; 19 ref22 ref21 ref28 ref27 ref29 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref11 doi: 10.1145/1553374.1553453 – ident: ref6 doi: 10.1109/TSP.2016.2552500 – ident: ref15 doi: 10.1137/080716542 – ident: ref25 doi: 10.1137/07070156X – ident: ref22 doi: 10.1016/j.acha.2010.10.002 – ident: ref29 doi: 10.1190/1.1468627 – ident: ref38 doi: 10.1190/1.9781560801580 – ident: ref16 doi: 10.5555/3104322.3104374 – ident: ref14 doi: 10.1002/cpa.20042 – ident: ref21 doi: 10.1137/S0097539792240406 – ident: ref23 doi: 10.1137/050626090 – ident: ref30 doi: 10.1029/jb084ib09p04737 – volume-title: Hands-on Machine Learning With Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems year: 2017 ident: ref24 – volume: 19 start-page: 303 issue: 4 year: 2010 ident: ref8 article-title: High resolution seismic reflectivity inversion publication-title: J. Seismic Explor. – ident: ref19 doi: 10.1109/TPAMI.2018.2883941 – ident: ref34 doi: 10.1016/j.sigpro.2018.08.013 – ident: ref9 doi: 10.1190/geo2011-0103.1 – ident: ref31 doi: 10.1017/cbo9781139168359 – ident: ref27 doi: 10.1016/j.sigpro.2017.02.016 – ident: ref33 doi: 10.1109/TIT.1982.1056496 – ident: ref5 doi: 10.1109/RADAR.2007.374203 – ident: ref10 doi: 10.1038/381607a0 – ident: ref1 doi: 10.1137/S003614450037906X – ident: ref32 doi: 10.5555/2999134.2999257 – ident: ref35 doi: 10.1190/1.1527094 – ident: ref7 doi: 10.1190/1.1440921 – ident: ref28 doi: 10.1190/geo2014-0441.1 – volume-title: arXiv:2001.08456 year: 2020 ident: ref17 article-title: Ada-LISTA: Learned solvers adaptive to varying models – ident: ref18 doi: 10.1109/ACCESS.2018.2882990 – ident: ref4 doi: 10.1109/TIT.2006.871582 – ident: ref20 doi: 10.1109/TMI.2021.3054167 – ident: ref3 doi: 10.1109/ICCV.2009.5459469 – ident: ref39 doi: 10.1109/TSP.2017.2733447 – ident: ref2 doi: 10.1007/978-1-4419-7011-4 – ident: ref37 doi: 10.5555/3454287.3455008 – volume: 18 start-page: 2887 issue: 1 year: 2017 ident: ref12 article-title: Convolutional neural networks analyzed via convolutional sparse coding publication-title: J. Mach. Learn. Res. – ident: ref13 doi: 10.1109/5.726791 – ident: ref26 doi: 10.1190/1.1441816 – ident: ref36 doi: 10.1190/1.1512799 |
| SSID | ssj0014517 |
| Score | 2.4042845 |
| Snippet | In sparse coding, we attempt to extract features of input vectors, assuming that the data is inherently structured as a sparse superposition of basic building... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Approximation Approximation algorithms Coding Coherence Convolution Convolutional neural network (CNN) convolutional sparse coding (CSC) Data points deep learning Dictionaries Encoding Feature extraction Glossaries Image coding Iterative methods Mathematical analysis Neural networks Receptive field Reflectance seismic inversion Seismic surveys Solvers sparse reflectivity Training Vectors |
| Title | Convolutional Sparse Coding Fast Approximation With Application to Seismic Reflectivity Estimation |
| URI | https://ieeexplore.ieee.org/document/9523595 https://www.proquest.com/docview/2623470377 |
| Volume | 60 |
| WOSCitedRecordID | wos000732905600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB20KOjBb7FaZQ-exGiabrLZYymtnoq0it5C9gsD2oiJxZ_v7GatgiJ4y2EHQt7uzHs7mRmAU5OrVISKBRzJRUCFVkEuqQ56XCId0DQRohk2wcbj9OGB3yzB-aIWRmvtfj7TF_bR5fJVKd_sVdklR9UU83gZlhlLmlqtRcaAxl1fGp0EKCIin8Hshvzy9moyRSUYdVGg4p6zxWzfYpAbqvLDE7vwMtr834ttwYankaTf4L4NS3q2A-vfmgvuwKr7uVNWuyAG5WzutxgaTV9QzGoyKG3YIqO8qknfdhZ_L5oyRnJf1I-k_5XZJnVJprqongtJJto8OR-J7J0M0T80NntwNxreDq4DP1shkBjg68CkiUIlJ1mqMIDzXmIiLvB80kgppEQiNZKFSiQoR3qUSWooFzlCGcYKOUKe9vahNStn-gCIEcaEqPIkTVLaNTyVJo8Z6jCtNHoH0Ybw82tn0jcet_MvnjInQEKeWYAyC1DmAWrD2cLkpem68dfiXYvIYqEHow2dT0gzfy6rLEK2R9HJMXb4u9URrEW2wMFdsnSgVb--6WNYkfO6qF5P3Jb7ALsU1Ik |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58oh58VbE-9-BJjKbp5rHHUqyKWsRW9BayLwxoIyaKP9_ZzVoFRfCWww6EfLsz37eTmQHY15lMuC9jjyG58ChX0ssEVV6bCaQDikac18Mm4n4_ub9n1xNwOK6FUUrZn8_UkXm0uXxZiFdzVXbMUDWFLJyE6ZDSwK-rtcY5Axq2XHF05KGMCFwOs-Wz4-HpzQC1YNBCiYq7zpSzfYtCdqzKD19sA0xv6X-vtgyLjkiSTo38Ckyo0SosfGsvuAqz9vdOUTaAd4vRm9tkaDR4RjmrSLcwgYv0srIiHdNb_D2vCxnJXV49kM5XbptUBRmovHzKBblR-tF6SeTv5AQ9RG2zBre9k2H3zHPTFTyBIb7ydBJJ1HIiTiSGcNaOdMA4nlAaSImkiCdaxL7kEQqSNo0F1ZTxDMH0Q4ksIUva6zA1KkZqA4jmWvuo8wSNEtrSLBE6C2NUYkoq9A-8Cf7n106Faz1uJmA8plaC-Cw1AKUGoNQB1ISDsclz3Xfjr8UNg8h4oQOjCdufkKbuZJZpgHyPopuL483frfZg7mx4dZlenvcvtmA-MOUO9splG6aql1e1AzPircrLl127_T4A8arX0A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Sparse+Coding+Fast+Approximation+With+Application+to+Seismic+Reflectivity+Estimation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Pereg%2C+Deborah&rft.au=Cohen%2C+Israel&rft.au=Vassiliou%2C+Anthony+A.&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1109%2FTGRS.2021.3105300&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2021_3105300 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |