Sparsity-Based Clustering for Large Hyperspectral Remote Sensing Images

Hyperspectral image (HSI) clustering is extremely challenging because of the complexity of the image structure. Recently, the subspace clustering algorithms have achieved competitive performance for HSIs. However, these methods generally are computationally complex and time-and-memory-consuming, giv...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 59; no. 12; pp. 10410 - 10424
Main Authors: Zhai, Han, Zhang, Hongyan, Zhang, Liangpei, Li, Pingxiang
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hyperspectral image (HSI) clustering is extremely challenging because of the complexity of the image structure. Recently, the subspace clustering algorithms have achieved competitive performance for HSIs. However, these methods generally are computationally complex and time-and-memory-consuming, given their reliance on large-scale adjacency matrix learning and graph segmentation, which limits their application to large HSIs and reduces their attractiveness in real applications. In this article, in view of this, two novel sparsity-based clustering algorithms are proposed for large HSIs, named sparse coding-based clustering (SCC) and joint SCC (JSCC). To the best of our knowledge, we are the first to use the sparse representation recovery residual to cluster HSIs. Based on a structured dictionary constructed by <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-means and <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-nearest neighbor (KNN), an SCC model is constructed to cluster HSIs according to the recovery residual minimization criterion. By dealing with a pixel-wise sparse recovery problem instead of the large-scale graph optimization problem of the whole image, the computational complexity and the time-and-memory cost are reduced to a large degree, which makes sense for practical applications. Then, by introducing the super-pixel neighborhood, a JSCC model is constructed to better explore the interpixel correlation of HSIs and further improve the clustering performance. The proposed algorithms were verified on three widely used HSIs. All the three experiments confirm the effectiveness of the proposed algorithms, which can be considered as competitive tools for use with large HSIs.
AbstractList Hyperspectral image (HSI) clustering is extremely challenging because of the complexity of the image structure. Recently, the subspace clustering algorithms have achieved competitive performance for HSIs. However, these methods generally are computationally complex and time-and-memory-consuming, given their reliance on large-scale adjacency matrix learning and graph segmentation, which limits their application to large HSIs and reduces their attractiveness in real applications. In this article, in view of this, two novel sparsity-based clustering algorithms are proposed for large HSIs, named sparse coding-based clustering (SCC) and joint SCC (JSCC). To the best of our knowledge, we are the first to use the sparse representation recovery residual to cluster HSIs. Based on a structured dictionary constructed by <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-means and <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-nearest neighbor (KNN), an SCC model is constructed to cluster HSIs according to the recovery residual minimization criterion. By dealing with a pixel-wise sparse recovery problem instead of the large-scale graph optimization problem of the whole image, the computational complexity and the time-and-memory cost are reduced to a large degree, which makes sense for practical applications. Then, by introducing the super-pixel neighborhood, a JSCC model is constructed to better explore the interpixel correlation of HSIs and further improve the clustering performance. The proposed algorithms were verified on three widely used HSIs. All the three experiments confirm the effectiveness of the proposed algorithms, which can be considered as competitive tools for use with large HSIs.
Hyperspectral image (HSI) clustering is extremely challenging because of the complexity of the image structure. Recently, the subspace clustering algorithms have achieved competitive performance for HSIs. However, these methods generally are computationally complex and time-and-memory-consuming, given their reliance on large-scale adjacency matrix learning and graph segmentation, which limits their application to large HSIs and reduces their attractiveness in real applications. In this article, in view of this, two novel sparsity-based clustering algorithms are proposed for large HSIs, named sparse coding-based clustering (SCC) and joint SCC (JSCC). To the best of our knowledge, we are the first to use the sparse representation recovery residual to cluster HSIs. Based on a structured dictionary constructed by [Formula Omitted]-means and [Formula Omitted]-nearest neighbor (KNN), an SCC model is constructed to cluster HSIs according to the recovery residual minimization criterion. By dealing with a pixel-wise sparse recovery problem instead of the large-scale graph optimization problem of the whole image, the computational complexity and the time-and-memory cost are reduced to a large degree, which makes sense for practical applications. Then, by introducing the super-pixel neighborhood, a JSCC model is constructed to better explore the interpixel correlation of HSIs and further improve the clustering performance. The proposed algorithms were verified on three widely used HSIs. All the three experiments confirm the effectiveness of the proposed algorithms, which can be considered as competitive tools for use with large HSIs.
Author Zhang, Hongyan
Zhang, Liangpei
Li, Pingxiang
Zhai, Han
Author_xml – sequence: 1
  givenname: Han
  surname: Zhai
  fullname: Zhai, Han
  email: han@cug.edu.cn
  organization: School of Geography and Information Engineering, China University of Geosciences, Wuhan, China
– sequence: 2
  givenname: Hongyan
  orcidid: 0000-0002-7894-5755
  surname: Zhang
  fullname: Zhang, Hongyan
  email: zhanghongyan@whu.edu.cn
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Liangpei
  orcidid: 0000-0001-6890-3650
  surname: Zhang
  fullname: Zhang, Liangpei
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Pingxiang
  surname: Li
  fullname: Li, Pingxiang
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
BookMark eNp9kM9PwjAUgBuDiYD-AcbLEs_Dtlt_HZUokJCYAJ6bbn0jI2OdbTnw37sF4sGDp16-773Xb4JGrWsBoUeCZ4Rg9bJbbLYziimeZTijORU3aEwYkynmeT5CY0wUT6lU9A5NQjhgTHJGxBgttp3xoY7n9M0EsMm8OYUIvm73SeV8sjZ-D8ny3IEPHZTRmybZwNFFSLbQhgFbHc0ewj26rUwT4OH6TtHXx_tuvkzXn4vV_HWdllRlMa0ktZwTiUuraF4oJYxkyvLKsqyQZX8lriBXjBJjuTWKM2EqS0GQoshKY7Mper7M7bz7PkGI-uBOvu1Xasox4bkgkvWUuFCldyF4qHRZRxNr1_Y_qBtNsB6q6aGaHqrpa7XeJH_MztdH48__Ok8XpwaAX15RJphU2Q-fDXoi
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2023_3326231
crossref_primary_10_1016_j_jag_2023_103614
crossref_primary_10_1016_j_cja_2022_11_028
crossref_primary_10_1080_01431161_2022_2061317
crossref_primary_10_1109_TGRS_2021_3132683
crossref_primary_10_1109_TGRS_2022_3217597
crossref_primary_10_1109_LGRS_2023_3246633
crossref_primary_10_1109_MGRS_2020_3032575
crossref_primary_10_1109_TGRS_2024_3375922
crossref_primary_10_1109_TGRS_2021_3061148
crossref_primary_10_1109_JSTARS_2022_3162423
crossref_primary_10_1109_TGRS_2022_3179637
crossref_primary_10_3390_rs16214097
crossref_primary_10_3390_jimaging8060163
crossref_primary_10_1109_TGRS_2022_3174830
crossref_primary_10_1109_TGRS_2022_3203481
crossref_primary_10_1109_TGRS_2021_3127536
crossref_primary_10_3390_s22155906
crossref_primary_10_1016_j_chemolab_2025_105463
crossref_primary_10_3390_rs15112832
crossref_primary_10_1109_TCSVT_2025_3535930
Cites_doi 10.1109/LGRS.2016.2625200
10.1109/LGRS.2017.2786732
10.1080/01431161.2010.502155
10.1109/TSMCB.2004.831165
10.1109/TKDE.2013.114
10.1137/080714488
10.1080/01431160310001618040
10.1109/JSTARS.2013.2252150
10.1109/LGRS.2008.2002319
10.1109/TCYB.2015.2453359
10.1109/TCYB.2014.2358564
10.1109/TGRS.2013.2282356
10.1109/TIT.1982.1056489
10.1109/TIT.2007.909108
10.1126/science.1242072
10.1109/TGRS.2018.2852708
10.1109/TIT.2005.860430
10.1109/TGRS.2017.2737037
10.1109/IGARSS.2016.7729632
10.1016/j.sigpro.2005.05.030
10.1109/TGRS.2016.2524557
10.1093/bioinformatics/btp123
10.1016/j.inffus.2010.04.001
10.1017/CBO9780511809071
10.1016/j.rse.2009.06.013
10.1109/TPAMI.2013.57
10.1109/TGRS.2018.2869723
10.1109/TCYB.2016.2533430
10.1109/TCYB.2015.2484324
10.1109/ACCESS.2018.2813988
10.1080/2150704X.2016.1249295
10.1109/TGRS.2016.2517242
10.1007/s10444-004-7613-4
10.1109/TPAMI.2012.88
10.1109/LGRS.2015.2402971
10.1109/TGRS.2019.2913004
10.1109/TGRS.2011.2129595
10.1117/12.627691
10.1109/JSTARS.2018.2846603
10.1016/j.patrec.2013.08.006
10.1109/LGRS.2017.2746625
10.1109/ISSCS.2013.6651211
10.1109/TIT.2011.2173241
10.1109/TPAMI.2012.120
10.1016/j.asoc.2018.09.015
10.1016/j.cogsys.2018.01.003
10.1109/TGRS.2017.2702061
10.1109/TGRS.2011.2113186
10.1109/TGRS.2005.861548
10.1109/TGRS.2017.2654486
10.1142/S0218001419550036
10.1007/s11947-016-1817-8
10.1109/JSTARS.2013.2264720
10.1109/TCYB.2015.2497711
10.1145/1553374.1553463
10.1109/LGRS.2012.2215005
10.1109/TGRS.2019.2920112
10.1109/TGRS.2010.2055876
10.1109/LGRS.2016.2517095
10.1117/12.2278221
10.1109/TGRS.2012.2201730
10.1016/j.rse.2011.05.014
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2020.3032427
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 10424
ExternalDocumentID 10_1109_TGRS_2020_3032427
9257589
Genre orig-research
GrantInformation_xml – fundername: Special Foundation for National Science and Technology Basic Research Program of China
  grantid: 2019FY202503
– fundername: National Key Research and Development Program of China
  grantid: 2018YFB0504500
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 42001313; 61871298
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-f82d66180cd924b997a859d6fd53b8c0190fe49521ad6da9657afd2e71bb3cad3
IEDL.DBID RIE
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000722170500047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:21:38 EDT 2025
Sat Nov 29 02:50:09 EST 2025
Tue Nov 18 22:16:49 EST 2025
Wed Aug 27 02:26:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-f82d66180cd924b997a859d6fd53b8c0190fe49521ad6da9657afd2e71bb3cad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7894-5755
0000-0001-6890-3650
PQID 2601647185
PQPubID 85465
PageCount 15
ParticipantIDs proquest_journals_2601647185
ieee_primary_9257589
crossref_citationtrail_10_1109_TGRS_2020_3032427
crossref_primary_10_1109_TGRS_2020_3032427
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
cahill (ref32) 2014; 9088
ref51
ref50
wang (ref38) 2020
ref45
ref48
ref47
bezdek (ref12) 2013
ref42
ref41
ref44
bie (ref46) 2006; 7
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
feng (ref62) 2013
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref2
ref1
ref39
shen (ref43) 2016
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
ng (ref30) 2002
ref60
ref61
References_xml – ident: ref10
  doi: 10.1109/LGRS.2016.2625200
– ident: ref19
  doi: 10.1109/LGRS.2017.2786732
– ident: ref27
  doi: 10.1080/01431161.2010.502155
– ident: ref13
  doi: 10.1109/TSMCB.2004.831165
– ident: ref45
  doi: 10.1109/TKDE.2013.114
– ident: ref58
  doi: 10.1137/080714488
– year: 2013
  ident: ref12
  publication-title: Pattern Recognition with Fuzzy Objective Function Algorithms
– ident: ref23
  doi: 10.1080/01431160310001618040
– ident: ref52
  doi: 10.1109/JSTARS.2013.2252150
– ident: ref14
  doi: 10.1109/LGRS.2008.2002319
– ident: ref3
  doi: 10.1109/TCYB.2015.2453359
– ident: ref47
  doi: 10.1109/TCYB.2014.2358564
– start-page: 849
  year: 2002
  ident: ref30
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref28
  doi: 10.1109/TGRS.2013.2282356
– ident: ref11
  doi: 10.1109/TIT.1982.1056489
– ident: ref56
  doi: 10.1109/TIT.2007.909108
– volume: 7
  start-page: 1409
  year: 2006
  ident: ref46
  article-title: Fast SDP relaxations of graph cut clustering, transduction, and other combinatorial problems
  publication-title: J Mach Learn Res
– ident: ref17
  doi: 10.1126/science.1242072
– ident: ref34
  doi: 10.1109/TGRS.2018.2852708
– ident: ref59
  doi: 10.1109/TIT.2005.860430
– ident: ref68
  doi: 10.1109/TGRS.2017.2737037
– ident: ref24
  doi: 10.1109/IGARSS.2016.7729632
– ident: ref60
  doi: 10.1016/j.sigpro.2005.05.030
– start-page: 2874
  year: 2013
  ident: ref62
  article-title: Generalized subspace pursuit for signal recovery from multiple-measurement vectors
  publication-title: Proc IEEE Wireless Commun Netw Conf (WCNC)
– ident: ref9
  doi: 10.1109/TGRS.2016.2524557
– ident: ref44
  doi: 10.1093/bioinformatics/btp123
– ident: ref61
  doi: 10.1016/j.inffus.2010.04.001
– ident: ref69
  doi: 10.1017/CBO9780511809071
– ident: ref6
  doi: 10.1016/j.rse.2009.06.013
– ident: ref35
  doi: 10.1109/TPAMI.2013.57
– ident: ref20
  doi: 10.1109/TGRS.2018.2869723
– ident: ref2
  doi: 10.1109/TCYB.2016.2533430
– ident: ref1
  doi: 10.1109/TCYB.2015.2484324
– ident: ref29
  doi: 10.1109/ACCESS.2018.2813988
– ident: ref18
  doi: 10.1080/2150704X.2016.1249295
– ident: ref41
  doi: 10.1109/TGRS.2016.2517242
– start-page: 622
  year: 2016
  ident: ref43
  article-title: Online low-rank subspace clustering by basis dictionary pursuit
  publication-title: Proc Int Conf Mach Learn (ICML)
– ident: ref63
  doi: 10.1007/s10444-004-7613-4
– ident: ref39
  doi: 10.1109/TPAMI.2012.88
– ident: ref55
  doi: 10.1109/LGRS.2015.2402971
– ident: ref49
  doi: 10.1109/TGRS.2019.2913004
– ident: ref50
  doi: 10.1109/TGRS.2011.2129595
– ident: ref22
  doi: 10.1117/12.627691
– ident: ref16
  doi: 10.1109/JSTARS.2018.2846603
– ident: ref40
  doi: 10.1016/j.patrec.2013.08.006
– ident: ref48
  doi: 10.1109/LGRS.2017.2746625
– year: 2020
  ident: ref38
  article-title: Fast high-order sparse subspace clustering with cumulative MRF for hyperspectral images
  publication-title: IEEE Geosci Remote Sens Lett
– ident: ref25
  doi: 10.1109/ISSCS.2013.6651211
– ident: ref57
  doi: 10.1109/TIT.2011.2173241
– volume: 9088
  year: 2014
  ident: ref32
  article-title: Schroedinger eigenmaps with nondiagonal potentials for spatial-spectral clustering of hyperspectral imagery
  publication-title: Proc SPIE
– ident: ref67
  doi: 10.1109/TPAMI.2012.120
– ident: ref31
  doi: 10.1016/j.asoc.2018.09.015
– ident: ref37
  doi: 10.1016/j.cogsys.2018.01.003
– ident: ref15
  doi: 10.1109/TGRS.2017.2702061
– ident: ref65
  doi: 10.1109/TGRS.2011.2113186
– ident: ref26
  doi: 10.1109/TGRS.2005.861548
– ident: ref33
  doi: 10.1109/TGRS.2017.2654486
– ident: ref36
  doi: 10.1142/S0218001419550036
– ident: ref7
  doi: 10.1007/s11947-016-1817-8
– ident: ref53
  doi: 10.1109/JSTARS.2013.2264720
– ident: ref4
  doi: 10.1109/TCYB.2015.2497711
– ident: ref42
  doi: 10.1145/1553374.1553463
– ident: ref66
  doi: 10.1109/LGRS.2012.2215005
– ident: ref5
  doi: 10.1109/TGRS.2019.2920112
– ident: ref64
  doi: 10.1109/TGRS.2010.2055876
– ident: ref54
  doi: 10.1109/LGRS.2016.2517095
– ident: ref21
  doi: 10.1117/12.2278221
– ident: ref51
  doi: 10.1109/TGRS.2012.2201730
– ident: ref8
  doi: 10.1016/j.rse.2011.05.014
SSID ssj0014517
Score 2.486928
Snippet Hyperspectral image (HSI) clustering is extremely challenging because of the complexity of the image structure. Recently, the subspace clustering algorithms...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10410
SubjectTerms Algorithms
Biological system modeling
Clustering
Clustering algorithms
Clustering methods
Complexity
Computational modeling
Computer applications
Dictionaries
Encoding
hyperspectral image (HSI)
Hyperspectral imaging
Image segmentation
joint sparse coding
Optimization
Pixels
Recovery
recovery residual
Remote sensing
sparse coding
Sparsity
Title Sparsity-Based Clustering for Large Hyperspectral Remote Sensing Images
URI https://ieeexplore.ieee.org/document/9257589
https://www.proquest.com/docview/2601647185
Volume 59
WOSCitedRecordID wos000722170500047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6qKOjBR1WsL_bgSYzuK7vJUYttBRGxKt6WPGZB0Cp9-PudpLEoiuBtD5NlmUky8-18MwNwmGlVyrjWTBc2Y3mCBRPIE8ZjpWzu8mS-yvXhqry-Fo-P8qYBx7NaGET05DM8cY8-l29fzcT9KjuVtL-4kHMwV5bFtFZrljHIeRJKowtGICINGcwklqd33ds-IcGUAGrs4ofymw_yQ1V-3MTevXRW__dha7ASwsjobGr3dWjgoAnLX5oLNmHRkzvNaAO6_TfluRfsnHyWjdrPE9cegaQiClmjK0cGj3oESKd1l0N68S2SCTHqO3o7iV2-0LUz2oT7zsVdu8fCAAVmyIuPWS1SS_5XxMYSzNJSlkpwaYva8kwL48rIaySElCbKFlbJgpeqtimWidaZUTbbgvnB6wC3IarjAnmqE4NW5kbVIufaeTaDCeZGmBbEnyqtTOgu7oZcPFceZcSyclaonBWqYIUWHM2WvE1ba_wlvOHUPhMMGm_B3qfdqnD4RlXokkaRyM7vq3ZhKXXUFM9K2YP58XCC-7Bg3sdPo-GB31cf4O_KbA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxwxDLaAgoBDaVkQCxTm0BNqIPPITHIEVFjEdoXYbcVtlIdHQoIF7YPfj5MNq6JWlXqbgzMa2Unsb_zZBviaG10p3hhmSpezIsWSSRQpE1xrV_g8Wahy_dWtej15d6duFuDbvBYGEQP5DI_9Y8jluyc79b_KThTtLyHVInwQRZHxWbXWPGdQiDQWR5eMYEQWc5gpVyeDy9s-YcGMICr3EUT1zguFsSp_3MXBwVxs_N-nfYKPMZBMTmeW_wwLONyE9d_aC27CSqB32nELLvvPOrAv2Bl5LZecP0x9gwSSSihoTbqeDp50CJLOKi9H9OJbJCNi0vcEdxK7eqSLZ7wFPy--D847LI5QYJb8-IQ1MnPkgSW3joCWUarSUihXNk7kRlpfSN4gYaQs1a50WpWi0o3LsEqNya12-TYsDZ-GuANJw0sUmUktOlVY3chCGO_bLKZYWGnbwN9UWtvYX9yPuXioA87gqvZWqL0V6miFNhzNlzzPmmv8S7jl1T4XjBpvw_6b3ep4_MZ17JNGscju31cdwmpn8KNbd69613uwlnmiSuCo7MPSZDTFL7BsXyb349FB2GOvkrDNsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparsity-Based+Clustering+for+Large+Hyperspectral+Remote+Sensing+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhai%2C+Han&rft.au=Zhang%2C+Hongyan&rft.au=Zhang%2C+Liangpei&rft.au=Li%2C+Pingxiang&rft.date=2021-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=59&rft.issue=12&rft.spage=10410&rft_id=info:doi/10.1109%2FTGRS.2020.3032427&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon