Denoising Autoencoder Aided Spectrum Reconstruction for Colloidal Quantum Dot Spectrometers

Recently, the colloidal quantum dot spectrometer has received much attention due to its advantages in cost, size, and operation. Yet, just like many other filter-based miniature spectrometers, spectrum reconstruction for the colloidal quantum dot spectrometer is typically prone to the measurement no...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal Vol. 21; no. 5; pp. 6450 - 6458
Main Authors: Zhang, Jinhui, Zhu, Xueyu, Bao, Jie
Format: Journal Article
Language:English
Published: New York IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1530-437X, 1558-1748
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, the colloidal quantum dot spectrometer has received much attention due to its advantages in cost, size, and operation. Yet, just like many other filter-based miniature spectrometers, spectrum reconstruction for the colloidal quantum dot spectrometer is typically prone to the measurement noise due to the correlation of the filters. In this paper, we propose an effective spectrum reconstruction method for the colloidal quantum dot spectrometer, which can recover high-quality spectra in noisy environments. Specifically, we employ a denoising autoencoder, a machine-learning approach, to reduce noise in the filters' raw measurements before performing the reconstruction. After that, we reconstruct the spectra with the denoised data by a sparse recovery algorithm. We investigate the feasibility of the proposed reconstruction approach on a synthetic dataset and an experimental dataset collected by the colloidal quantum dot spectrometer. The results demonstrate that the proposed approach could deliver accurate reconstruction results even when data are corrupted with the measurement noise.
AbstractList Recently, the colloidal quantum dot spectrometer has received much attention due to its advantages in cost, size, and operation. Yet, just like many other filter-based miniature spectrometers, spectrum reconstruction for the colloidal quantum dot spectrometer is typically prone to the measurement noise due to the correlation of the filters. In this paper, we propose an effective spectrum reconstruction method for the colloidal quantum dot spectrometer, which can recover high-quality spectra in noisy environments. Specifically, we employ a denoising autoencoder, a machine-learning approach, to reduce noise in the filters' raw measurements before performing the reconstruction. After that, we reconstruct the spectra with the denoised data by a sparse recovery algorithm. We investigate the feasibility of the proposed reconstruction approach on a synthetic dataset and an experimental dataset collected by the colloidal quantum dot spectrometer. The results demonstrate that the proposed approach could deliver accurate reconstruction results even when data are corrupted with the measurement noise.
Author Zhu, Xueyu
Bao, Jie
Zhang, Jinhui
Author_xml – sequence: 1
  givenname: Jinhui
  orcidid: 0000-0002-3201-0794
  surname: Zhang
  fullname: Zhang, Jinhui
  email: jinhui-z15@mails.tsinghua.edu.cn
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Xueyu
  orcidid: 0000-0001-9596-6227
  surname: Zhu
  fullname: Zhu, Xueyu
  email: xueyu-zhu@uiowa.edu
  organization: Department of Mathematics, University of Iowa, Iowa City, IA, USA
– sequence: 3
  givenname: Jie
  orcidid: 0000-0002-5642-1993
  surname: Bao
  fullname: Bao, Jie
  email: bao@tsinghua.edu.cn
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
BookMark eNp9kD1PwzAQhi1UJErhByCWSMwpdhzH8Vi15UsVCAoSEkPk2BfkKrWL7Qz8exK1YmBgund4nzvdc4pG1llA6ILgKSFYXD-sl4_TDGd4SjEVgtMjNCaMlSnheTkaMsVpTvn7CToNYYMxEZzxMfpYgHUmGPuZzLrowCqnwSczo0En6x2o6Ltt8gLK2dBHFY2zSeN8Mndt64yWbfLcSRv70sLFA-G2EMGHM3TcyDbA-WFO0NvN8nV-l66ebu_ns1WqMkFj2vBa1ApKpupc55LgXMgCg9JUCUJKTqHQGdZFTTOOhQRGtcwZMAYFBwaSTtDVfu_Ou68OQqw2rvO2P1llecn7r7lgfYvsW8q7EDw01c6brfTfFcHV4LAaHFaDw-rgsGf4H0aZKAcH0UvT_kte7kkDAL-XRFYIKkr6A2azgoo
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1002_advs_202404448
crossref_primary_10_1515_teme_2024_0063
crossref_primary_10_1016_j_bios_2025_117301
crossref_primary_10_1186_s43593_025_00101_0
crossref_primary_10_3390_s24237658
crossref_primary_10_1038_s41377_024_01476_4
crossref_primary_10_1145_3568308
crossref_primary_10_3390_s23218768
crossref_primary_10_1515_nanoph_2021_0636
crossref_primary_10_1049_cmu2_12706
crossref_primary_10_1038_s41598_025_06691_6
crossref_primary_10_1038_s41928_024_01242_9
crossref_primary_10_1038_s41467_024_54704_1
crossref_primary_10_1002_adom_202100376
crossref_primary_10_1063_5_0090138
crossref_primary_10_1038_s41598_025_06599_1
crossref_primary_10_1126_science_ade1220
Cites_doi 10.1109/JSTSP.2007.910971
10.1364/OE.16.001056
10.1038/nmeth.1248
10.1109/MSP.2007.4286571
10.1109/LPT.2016.2636340
10.1109/ICDMW.2016.0041
10.1038/natrevmats.2016.100
10.1038/nphoton.2011.12
10.3390/s18020644
10.1109/TIP.2007.901238
10.3390/s20030594
10.1109/TIT.2006.871582
10.1109/ICIEA.2012.6360767
10.1137/1034115
10.1038/nature14576
10.1364/OE.22.021541
10.3390/rs10030482
10.1016/j.optlaseng.2018.10.018
10.1364/OL.32.000632
10.1063/1.1633025
10.1117/1.3645086
10.1145/1390156.1390294
10.1109/TIP.2006.881969
10.1137/040616024
10.1364/OE.20.002613
10.1364/OE.21.003969
10.1109/JSEN.2012.2197609
10.1109/JSEN.2010.2103054
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2020.3039973
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 6458
ExternalDocumentID 10_1109_JSEN_2020_3039973
9269398
Genre orig-research
GrantInformation_xml – fundername: Simons Foundation
  grantid: 504054
  funderid: 10.13039/100000893
– fundername: Beijing National Research Center for Information Science and Technology
  grantid: BNR2019ZS01005
  funderid: 10.13039/501100017582
– fundername: Beijing Innovation Center for Future Chips, Tsinghua University
  funderid: 10.13039/501100012282
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-f7b9bce85cb4d4a1049a60ecd3c911873e6d20d6b32709ae53da45e55e67e5ea3
IEDL.DBID RIE
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000616329300095&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:10:34 EDT 2025
Tue Nov 18 21:51:46 EST 2025
Sat Nov 29 05:43:06 EST 2025
Wed Aug 27 02:30:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-f7b9bce85cb4d4a1049a60ecd3c911873e6d20d6b32709ae53da45e55e67e5ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3201-0794
0000-0001-9596-6227
0000-0002-5642-1993
PQID 2487437795
PQPubID 75733
PageCount 9
ParticipantIDs proquest_journals_2487437795
crossref_citationtrail_10_1109_JSEN_2020_3039973
crossref_primary_10_1109_JSEN_2020_3039973
ieee_primary_9269398
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
(ref34) 2019
ref15
chang (ref11) 2010
ref14
ref31
ref30
ref33
ref32
ref10
ref2
ref1
(ref39) 0
ref17
ref16
kim (ref35) 2020; 20
ref19
ref18
xu (ref29) 2015
lu (ref20) 2018; 10665
(ref37) 2020
ref24
ref23
ref26
chang (ref12) 2010
ref22
ref21
ref28
kingma (ref38) 2014
ref8
ref7
ref9
ref4
(ref36) 2020
ref3
ref6
ref5
(ref27) 0
xie (ref25) 2012
References_xml – ident: ref32
  doi: 10.1109/JSTSP.2007.910971
– ident: ref10
  doi: 10.1364/OE.16.001056
– year: 2019
  ident: ref34
  publication-title: Spectral Color Research Group
– ident: ref4
  doi: 10.1038/nmeth.1248
– ident: ref31
  doi: 10.1109/MSP.2007.4286571
– ident: ref19
  doi: 10.1109/LPT.2016.2636340
– year: 0
  ident: ref27
  publication-title: Deep learning tutorial
– volume: 10665
  start-page: 131
  year: 2018
  ident: ref20
  article-title: Signal recovery for compressive spectrometers
  publication-title: Sensing for Agriculture and Food Quality and Safety
– ident: ref26
  doi: 10.1109/ICDMW.2016.0041
– year: 0
  ident: ref39
  publication-title: Ocean Insight
– year: 2015
  ident: ref29
  article-title: Empirical evaluation of rectified activations in convolutional network
  publication-title: arXiv 1505 00853
– ident: ref5
  doi: 10.1038/natrevmats.2016.100
– ident: ref6
  doi: 10.1038/nphoton.2011.12
– ident: ref18
  doi: 10.3390/s18020644
– ident: ref23
  doi: 10.1109/TIP.2007.901238
– year: 2014
  ident: ref38
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– volume: 20
  start-page: 594
  year: 2020
  ident: ref35
  article-title: Compressive sensing spectroscopy using a residual convolutional neural network
  publication-title: SENSORS
  doi: 10.3390/s20030594
– ident: ref30
  doi: 10.1109/TIT.2006.871582
– ident: ref16
  doi: 10.1109/ICIEA.2012.6360767
– ident: ref33
  doi: 10.1137/1034115
– ident: ref3
  doi: 10.1038/nature14576
– ident: ref14
  doi: 10.1364/OE.22.021541
– ident: ref22
  doi: 10.3390/rs10030482
– ident: ref9
  doi: 10.1016/j.optlaseng.2018.10.018
– ident: ref2
  doi: 10.1364/OL.32.000632
– start-page: 341
  year: 2012
  ident: ref25
  article-title: Image denoising and inpainting with deep neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref1
  doi: 10.1063/1.1633025
– ident: ref15
  doi: 10.1117/1.3645086
– ident: ref28
  doi: 10.1145/1390156.1390294
– ident: ref24
  doi: 10.1109/TIP.2006.881969
– year: 2010
  ident: ref12
  article-title: LED spectrum measurement via low cost spectrum sensor on-a-chip
  publication-title: Optical Sensors and Biophotonics
– year: 2020
  ident: ref36
– ident: ref21
  doi: 10.1137/040616024
– ident: ref8
  doi: 10.1364/OE.20.002613
– ident: ref17
  doi: 10.1364/OE.21.003969
– ident: ref13
  doi: 10.1109/JSEN.2012.2197609
– year: 2020
  ident: ref37
  publication-title: TensorFlow Core v2 2 0
– start-page: 278
  year: 2010
  ident: ref11
  article-title: Spectrum measurement via low cost spectrum sensor on-a-chip
  publication-title: Proc Asia Commun Photon Conf Exhib
– ident: ref7
  doi: 10.1109/JSEN.2010.2103054
SSID ssj0019757
Score 2.4415693
Snippet Recently, the colloidal quantum dot spectrometer has received much attention due to its advantages in cost, size, and operation. Yet, just like many other...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6450
SubjectTerms Algorithms
Colloids
Correlation analysis
Datasets
denoising autoencoder
Image reconstruction
Machine learning
Miniature spectrometer
Noise
Noise measurement
Noise reduction
Quantum dots
Reconstruction
Reconstruction algorithms
Sensitivity
Sensors
Spectrometers
spectrum reconstruction
Title Denoising Autoencoder Aided Spectrum Reconstruction for Colloidal Quantum Dot Spectrometers
URI https://ieeexplore.ieee.org/document/9269398
https://www.proquest.com/docview/2487437795
Volume 21
WOSCitedRecordID wos000616329300095&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD6oCO4-eBfHG33wSax2kjRpHgcviMigeGFgH0ranOKAM5WZzsL--83JxFFxEfatDzm05GtyLjn5PoBDF7ObQioWS7q_JYQWsWGlibGwyLNUmcw3jz_dqG436_X07Rwcz-7CIKJvPsMTevRn-bYuJ1QqO9VMaq6zeZhXSk7vas1ODLTyrJ5uASex4KoXTjDbiT69vr_oukyQuQQ1cf5Y8U8-yIuqfNmJvXu5XPm_D1uF5RBGRp0p7mswh8N1-PmBXHAdloK--fOfDfh1jsO6T2WBqDNpaiKvtDiKOn2LNiIJ-mY0GUSUir4TykYunI2orlD3rXvV3cRh4Aad102wqAfUSjPehMfLi4ezqzjIKsSl8-1NXKlCF6RWWhbCCuPyMW1kgqXlpSbxcY7SssTKgjOVaIMpt0akmKYoFaZo-BYsDOshbkPUbhcZq2yBlWKi0m4zsJKLSgjFXCSaihYkbxOdl4FznKQvXnKfeyQ6J2xywiYP2LTgaGbyOiXc-G7wBoExGxhwaMHeG5p5WJLjnLnUTBC9Yrrzb6td-MGoYcU3mO3Bgptu3IfF8nfTH48O_N_2F2nz0mA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD4ChgQ8sHGZ6MZYHnhCC01tJ44fK6DiUiqmlakSD5ETn2iVaIPaFIl_j48xBbQJaW958FEif7HPxcffB7BvY3adJ5KFCd3fEkKJULNCh5gb5Gksdeqax393Za-XDgbqagF-zO_CIKJrPsNDenRn-aYqZlQqayqWKK7SRfhAyln-ttb8zEBJx-tpl3AUCi4H_gyzFanm-a-Tns0FmU1RI-uRJX_jhZysyl97sXMwnY__92mfYN0HkkH7CfkNWMDxJqy9ohfchBWvcP7nYQtujnFcDakwELRndUX0lQYnQXto0AQkQl9PZqOAktEXStnABrQBVRaqobGv-jmzKNhBx1XtLaoRNdNMt-G6c9I_Og29sEJYWO9eh6XMVU56pUUujNA2I1M6ibAwvFAkP84xMSwySc6ZjJTGmBstYoxjTCTGqPlnWBpXY9yBoNXKU1aaHEvJRKnsdmASLkohJLOxaCwaED1PdFZ41nESv7jNXPYRqYywyQibzGPTgIO5yd0T5cZ7g7cIjPlAj0MDdp_RzPyinGbMJmeCCBbjL_-2-g4rp_3LbtY96118hVVG7Suu3WwXluzU4zdYLu7r4XSy5_68R4fp1ak
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Denoising+Autoencoder+Aided+Spectrum+Reconstruction+for+Colloidal+Quantum+Dot+Spectrometers&rft.jtitle=IEEE+sensors+journal&rft.au=Zhang%2C+Jinhui&rft.au=Zhu%2C+Xueyu&rft.au=Bao%2C+Jie&rft.date=2021-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=5&rft.spage=6450&rft_id=info:doi/10.1109%2FJSEN.2020.3039973&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon