Denoising Autoencoder Aided Spectrum Reconstruction for Colloidal Quantum Dot Spectrometers
Recently, the colloidal quantum dot spectrometer has received much attention due to its advantages in cost, size, and operation. Yet, just like many other filter-based miniature spectrometers, spectrum reconstruction for the colloidal quantum dot spectrometer is typically prone to the measurement no...
Uložené v:
| Vydané v: | IEEE sensors journal Ročník 21; číslo 5; s. 6450 - 6458 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Recently, the colloidal quantum dot spectrometer has received much attention due to its advantages in cost, size, and operation. Yet, just like many other filter-based miniature spectrometers, spectrum reconstruction for the colloidal quantum dot spectrometer is typically prone to the measurement noise due to the correlation of the filters. In this paper, we propose an effective spectrum reconstruction method for the colloidal quantum dot spectrometer, which can recover high-quality spectra in noisy environments. Specifically, we employ a denoising autoencoder, a machine-learning approach, to reduce noise in the filters' raw measurements before performing the reconstruction. After that, we reconstruct the spectra with the denoised data by a sparse recovery algorithm. We investigate the feasibility of the proposed reconstruction approach on a synthetic dataset and an experimental dataset collected by the colloidal quantum dot spectrometer. The results demonstrate that the proposed approach could deliver accurate reconstruction results even when data are corrupted with the measurement noise. |
|---|---|
| AbstractList | Recently, the colloidal quantum dot spectrometer has received much attention due to its advantages in cost, size, and operation. Yet, just like many other filter-based miniature spectrometers, spectrum reconstruction for the colloidal quantum dot spectrometer is typically prone to the measurement noise due to the correlation of the filters. In this paper, we propose an effective spectrum reconstruction method for the colloidal quantum dot spectrometer, which can recover high-quality spectra in noisy environments. Specifically, we employ a denoising autoencoder, a machine-learning approach, to reduce noise in the filters' raw measurements before performing the reconstruction. After that, we reconstruct the spectra with the denoised data by a sparse recovery algorithm. We investigate the feasibility of the proposed reconstruction approach on a synthetic dataset and an experimental dataset collected by the colloidal quantum dot spectrometer. The results demonstrate that the proposed approach could deliver accurate reconstruction results even when data are corrupted with the measurement noise. |
| Author | Zhu, Xueyu Bao, Jie Zhang, Jinhui |
| Author_xml | – sequence: 1 givenname: Jinhui orcidid: 0000-0002-3201-0794 surname: Zhang fullname: Zhang, Jinhui email: jinhui-z15@mails.tsinghua.edu.cn organization: Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 2 givenname: Xueyu orcidid: 0000-0001-9596-6227 surname: Zhu fullname: Zhu, Xueyu email: xueyu-zhu@uiowa.edu organization: Department of Mathematics, University of Iowa, Iowa City, IA, USA – sequence: 3 givenname: Jie orcidid: 0000-0002-5642-1993 surname: Bao fullname: Bao, Jie email: bao@tsinghua.edu.cn organization: Department of Electronic Engineering, Tsinghua University, Beijing, China |
| BookMark | eNp9kD1PwzAQhi1UJErhByCWSMwpdhzH8Vi15UsVCAoSEkPk2BfkKrWL7Qz8exK1YmBgund4nzvdc4pG1llA6ILgKSFYXD-sl4_TDGd4SjEVgtMjNCaMlSnheTkaMsVpTvn7CToNYYMxEZzxMfpYgHUmGPuZzLrowCqnwSczo0En6x2o6Ltt8gLK2dBHFY2zSeN8Mndt64yWbfLcSRv70sLFA-G2EMGHM3TcyDbA-WFO0NvN8nV-l66ebu_ns1WqMkFj2vBa1ApKpupc55LgXMgCg9JUCUJKTqHQGdZFTTOOhQRGtcwZMAYFBwaSTtDVfu_Ou68OQqw2rvO2P1llecn7r7lgfYvsW8q7EDw01c6brfTfFcHV4LAaHFaDw-rgsGf4H0aZKAcH0UvT_kte7kkDAL-XRFYIKkr6A2azgoo |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1002_advs_202404448 crossref_primary_10_1515_teme_2024_0063 crossref_primary_10_1016_j_bios_2025_117301 crossref_primary_10_1186_s43593_025_00101_0 crossref_primary_10_3390_s24237658 crossref_primary_10_1038_s41377_024_01476_4 crossref_primary_10_1145_3568308 crossref_primary_10_3390_s23218768 crossref_primary_10_1515_nanoph_2021_0636 crossref_primary_10_1049_cmu2_12706 crossref_primary_10_1038_s41598_025_06691_6 crossref_primary_10_1038_s41928_024_01242_9 crossref_primary_10_1038_s41467_024_54704_1 crossref_primary_10_1002_adom_202100376 crossref_primary_10_1063_5_0090138 crossref_primary_10_1038_s41598_025_06599_1 crossref_primary_10_1126_science_ade1220 |
| Cites_doi | 10.1109/JSTSP.2007.910971 10.1364/OE.16.001056 10.1038/nmeth.1248 10.1109/MSP.2007.4286571 10.1109/LPT.2016.2636340 10.1109/ICDMW.2016.0041 10.1038/natrevmats.2016.100 10.1038/nphoton.2011.12 10.3390/s18020644 10.1109/TIP.2007.901238 10.3390/s20030594 10.1109/TIT.2006.871582 10.1109/ICIEA.2012.6360767 10.1137/1034115 10.1038/nature14576 10.1364/OE.22.021541 10.3390/rs10030482 10.1016/j.optlaseng.2018.10.018 10.1364/OL.32.000632 10.1063/1.1633025 10.1117/1.3645086 10.1145/1390156.1390294 10.1109/TIP.2006.881969 10.1137/040616024 10.1364/OE.20.002613 10.1364/OE.21.003969 10.1109/JSEN.2012.2197609 10.1109/JSEN.2010.2103054 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2020.3039973 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 6458 |
| ExternalDocumentID | 10_1109_JSEN_2020_3039973 9269398 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Simons Foundation grantid: 504054 funderid: 10.13039/100000893 – fundername: Beijing National Research Center for Information Science and Technology grantid: BNR2019ZS01005 funderid: 10.13039/501100017582 – fundername: Beijing Innovation Center for Future Chips, Tsinghua University funderid: 10.13039/501100012282 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c293t-f7b9bce85cb4d4a1049a60ecd3c911873e6d20d6b32709ae53da45e55e67e5ea3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000616329300095&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:10:34 EDT 2025 Tue Nov 18 21:51:46 EST 2025 Sat Nov 29 05:43:06 EST 2025 Wed Aug 27 02:30:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-f7b9bce85cb4d4a1049a60ecd3c911873e6d20d6b32709ae53da45e55e67e5ea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3201-0794 0000-0001-9596-6227 0000-0002-5642-1993 |
| PQID | 2487437795 |
| PQPubID | 75733 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2487437795 crossref_citationtrail_10_1109_JSEN_2020_3039973 crossref_primary_10_1109_JSEN_2020_3039973 ieee_primary_9269398 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 (ref34) 2019 ref15 chang (ref11) 2010 ref14 ref31 ref30 ref33 ref32 ref10 ref2 ref1 (ref39) 0 ref17 ref16 kim (ref35) 2020; 20 ref19 ref18 xu (ref29) 2015 lu (ref20) 2018; 10665 (ref37) 2020 ref24 ref23 ref26 chang (ref12) 2010 ref22 ref21 ref28 kingma (ref38) 2014 ref8 ref7 ref9 ref4 (ref36) 2020 ref3 ref6 ref5 (ref27) 0 xie (ref25) 2012 |
| References_xml | – ident: ref32 doi: 10.1109/JSTSP.2007.910971 – ident: ref10 doi: 10.1364/OE.16.001056 – year: 2019 ident: ref34 publication-title: Spectral Color Research Group – ident: ref4 doi: 10.1038/nmeth.1248 – ident: ref31 doi: 10.1109/MSP.2007.4286571 – ident: ref19 doi: 10.1109/LPT.2016.2636340 – year: 0 ident: ref27 publication-title: Deep learning tutorial – volume: 10665 start-page: 131 year: 2018 ident: ref20 article-title: Signal recovery for compressive spectrometers publication-title: Sensing for Agriculture and Food Quality and Safety – ident: ref26 doi: 10.1109/ICDMW.2016.0041 – year: 0 ident: ref39 publication-title: Ocean Insight – year: 2015 ident: ref29 article-title: Empirical evaluation of rectified activations in convolutional network publication-title: arXiv 1505 00853 – ident: ref5 doi: 10.1038/natrevmats.2016.100 – ident: ref6 doi: 10.1038/nphoton.2011.12 – ident: ref18 doi: 10.3390/s18020644 – ident: ref23 doi: 10.1109/TIP.2007.901238 – year: 2014 ident: ref38 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – volume: 20 start-page: 594 year: 2020 ident: ref35 article-title: Compressive sensing spectroscopy using a residual convolutional neural network publication-title: SENSORS doi: 10.3390/s20030594 – ident: ref30 doi: 10.1109/TIT.2006.871582 – ident: ref16 doi: 10.1109/ICIEA.2012.6360767 – ident: ref33 doi: 10.1137/1034115 – ident: ref3 doi: 10.1038/nature14576 – ident: ref14 doi: 10.1364/OE.22.021541 – ident: ref22 doi: 10.3390/rs10030482 – ident: ref9 doi: 10.1016/j.optlaseng.2018.10.018 – ident: ref2 doi: 10.1364/OL.32.000632 – start-page: 341 year: 2012 ident: ref25 article-title: Image denoising and inpainting with deep neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref1 doi: 10.1063/1.1633025 – ident: ref15 doi: 10.1117/1.3645086 – ident: ref28 doi: 10.1145/1390156.1390294 – ident: ref24 doi: 10.1109/TIP.2006.881969 – year: 2010 ident: ref12 article-title: LED spectrum measurement via low cost spectrum sensor on-a-chip publication-title: Optical Sensors and Biophotonics – year: 2020 ident: ref36 – ident: ref21 doi: 10.1137/040616024 – ident: ref8 doi: 10.1364/OE.20.002613 – ident: ref17 doi: 10.1364/OE.21.003969 – ident: ref13 doi: 10.1109/JSEN.2012.2197609 – year: 2020 ident: ref37 publication-title: TensorFlow Core v2 2 0 – start-page: 278 year: 2010 ident: ref11 article-title: Spectrum measurement via low cost spectrum sensor on-a-chip publication-title: Proc Asia Commun Photon Conf Exhib – ident: ref7 doi: 10.1109/JSEN.2010.2103054 |
| SSID | ssj0019757 |
| Score | 2.4415693 |
| Snippet | Recently, the colloidal quantum dot spectrometer has received much attention due to its advantages in cost, size, and operation. Yet, just like many other... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6450 |
| SubjectTerms | Algorithms Colloids Correlation analysis Datasets denoising autoencoder Image reconstruction Machine learning Miniature spectrometer Noise Noise measurement Noise reduction Quantum dots Reconstruction Reconstruction algorithms Sensitivity Sensors Spectrometers spectrum reconstruction |
| Title | Denoising Autoencoder Aided Spectrum Reconstruction for Colloidal Quantum Dot Spectrometers |
| URI | https://ieeexplore.ieee.org/document/9269398 https://www.proquest.com/docview/2487437795 |
| Volume | 21 |
| WOSCitedRecordID | wos000616329300095&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB7aIlQfWvsLr7ayD32Sbhs32eTyeNgWETkUtRz4sOTHHB60t3K3J_jfO5NLT0ul4NvCJuySL8nMl5nMB3AigxBOoy3RSl0qXfnSC2dp4XmeRFj7FMG__mCGw_5oZD-uwenqLgwipuQzPOPHFMuPbVjwUdm5rbSVtr8O68bo5V2tVcTAmlTVkxawKJU0oxzBfCPs-fvPl0NighURVEH22Mh7NiiJqjzYiZN5udr-vx97DlvZjSwGS9x3YA2nu_Dsr-KCu7CZ9c2__9qDbxc4bSd8LFAMFl3LxSsjzorBJGIsWIK-my1uC6aifwrKFuTOFnyu0E4iferTgjCgRhdtl3u0t5xKM9-Hr1eXX96-K7OsQhnItnfl2HjrWa00eBWVIz5mnRYYogyWxccl6liJqL2sjLAOaxmdqrGuURus0ckD2Ji2U3wBhTNO0UtUle8rLwN5n7E2YyRejWNyBHsg7ga6CbnmOEtf3DSJewjbMDYNY9NkbHrwetXlx7LgxmON9xiMVcOMQw-O7tBs8pKcNxVRM8XlFevDf_d6CU8rTlhJCWZHsEHDjcfwJPzsJvPZqzTbfgNnsNM- |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB5qLbQ-qP0hPa26D30S10s32c3l8bAttb0eFasc-LDkxxwetLflbk_wv3cmTc-KIvi2sAm75Esy82Um8wHsSy-ErdDkaGSVq6pwuRPW0MJzPImwdDGC_2Wgh8PeaGQuVuDt8i4MIsbkM3zHjzGWHxq_4KOyrikqI03vATxk5ax0W2sZMzA61vWkJSxyJfUoxTAPhOmefjoaEhcsiKIKssha_maFoqzKH3txNDDHT_7v157C4-RIZv1b5DdhBadb8OheecEtWE8K599-bMPXQ5w2Ez4YyPqLtuHylQFnWX8SMGQsQt_OFtcZk9FfJWUzcmgzPlloJoE-9XFBKFCjw6ZNPZprTqaZ78Dn46PL9yd5ElbIPVn3Nh9rZxzrlXqngrLEyIytBPogvWH5cYlVKESonCy0MBZLGawqsSyx0liilc9gddpMcRcyq62il6gK11NOevI_Q6nHSMwax-QKdkDcDXTtU9VxFr-4qiP7EKZmbGrGpk7YdODNssvNbcmNfzXeZjCWDRMOHdi7Q7NOi3JeF0TOFBdYLJ__vddrWD-5PB_Ugw_DsxewUXD6Skw324NVGnp8CWv-ezuZz17FmfcTkEzWhw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Denoising+Autoencoder+Aided+Spectrum+Reconstruction+for+Colloidal+Quantum+Dot+Spectrometers&rft.jtitle=IEEE+sensors+journal&rft.au=Zhang%2C+Jinhui&rft.au=Zhu%2C+Xueyu&rft.au=Bao%2C+Jie&rft.date=2021-03-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=21&rft.issue=5&rft.spage=6450&rft.epage=6458&rft_id=info:doi/10.1109%2FJSEN.2020.3039973&rft.externalDocID=9269398 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |