Vehicle Trajectory Prediction and Cut-In Collision Warning Model in a Connected Vehicle Environment

Side collisions caused by sudden vehicle cut-ins comprise a significant proportion of traffic accidents. Due to the complex and dynamic nature of traffic environments, the warning algorithms in advanced driving assistant systems (ADAS) often misjudge and misdiagnose risk and omit necessary warnings,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems Vol. 23; no. 2; pp. 966 - 981
Main Authors: Lyu, Nengchao, Wen, Jiaqiang, Duan, Zhicheng, Wu, Chaozhong
Format: Journal Article
Language:English
Published: New York IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1524-9050, 1558-0016
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Side collisions caused by sudden vehicle cut-ins comprise a significant proportion of traffic accidents. Due to the complex and dynamic nature of traffic environments, the warning algorithms in advanced driving assistant systems (ADAS) often misjudge and misdiagnose risk and omit necessary warnings, because they rely solely on the sensing information of the single vehicle equipped with ADAS and have limited insights from and communication with the surrounding vehicles and traffic environment. To improve the effectiveness of ADAS in cut-in scenarios, this study established a collision warning model in a vehicle-to-vehicle (V2V) communication environment. Firstly, based on the support vector machine-recursive feature elimination (SVM-RFE) lane-change intent-recognition model, the lane-change feasibility and the change rate of the lateral offset, the logical "and" was used to establish a lane-change behavior prediction model, and a trajectory prediction model was established based on the long short-term memory (LSTM). Then, based on the proposed comprehensive prediction model for lane-change behavior, the driving trajectory prediction model, and the oriented bounding box (OBB) detection algorithm, a collision warning model was established for a V2V environment. Finally, based on a driving simulation platform and a real-world vehicle test, a cut-in experiment in a V2V environment was designed and implemented. By comparing the warning confusion matrix and warning time, it was found that the proposed cut-in collision warning model is superior to the traditional collision warning model. The results of this study can provide new modeling ideas and a theoretical basis for ADAS to further optimize for a cut-in scenario.
AbstractList Side collisions caused by sudden vehicle cut-ins comprise a significant proportion of traffic accidents. Due to the complex and dynamic nature of traffic environments, the warning algorithms in advanced driving assistant systems (ADAS) often misjudge and misdiagnose risk and omit necessary warnings, because they rely solely on the sensing information of the single vehicle equipped with ADAS and have limited insights from and communication with the surrounding vehicles and traffic environment. To improve the effectiveness of ADAS in cut-in scenarios, this study established a collision warning model in a vehicle-to-vehicle (V2V) communication environment. Firstly, based on the support vector machine-recursive feature elimination (SVM-RFE) lane-change intent-recognition model, the lane-change feasibility and the change rate of the lateral offset, the logical “and” was used to establish a lane-change behavior prediction model, and a trajectory prediction model was established based on the long short-term memory (LSTM). Then, based on the proposed comprehensive prediction model for lane-change behavior, the driving trajectory prediction model, and the oriented bounding box (OBB) detection algorithm, a collision warning model was established for a V2V environment. Finally, based on a driving simulation platform and a real-world vehicle test, a cut-in experiment in a V2V environment was designed and implemented. By comparing the warning confusion matrix and warning time, it was found that the proposed cut-in collision warning model is superior to the traditional collision warning model. The results of this study can provide new modeling ideas and a theoretical basis for ADAS to further optimize for a cut-in scenario.
Author Wen, Jiaqiang
Wu, Chaozhong
Lyu, Nengchao
Duan, Zhicheng
Author_xml – sequence: 1
  givenname: Nengchao
  orcidid: 0000-0002-0926-9140
  surname: Lyu
  fullname: Lyu, Nengchao
  email: lnc@whut.edu.cn
  organization: Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan, China
– sequence: 2
  givenname: Jiaqiang
  surname: Wen
  fullname: Wen, Jiaqiang
  organization: Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan, China
– sequence: 3
  givenname: Zhicheng
  surname: Duan
  fullname: Duan, Zhicheng
  organization: Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan, China
– sequence: 4
  givenname: Chaozhong
  surname: Wu
  fullname: Wu, Chaozhong
  organization: Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan, China
BookMark eNp9kMFPwyAYxYmZidv0DzBemnju5ANK26NZpi6Z0cSqR0KBKksHkzKT_fe2mXrw4AnyeL_3fbwJGjnvDELngGcAuLyqltXTjGCCZxRDiTN8hMaQZUWKMfDRcCcsHfQTNOm6da-yDGCM1It5t6o1SRXk2qjowz55DEZbFa13iXQ6me9iunTJ3Let7QbxVQZn3Vty77VpE9u7-kfnetro5Cdv4T5t8G5jXDxFx41sO3P2fU7R882imt-lq4fb5fx6lSpS0pg2vGZGYUZZqUkOBGRdSJZrbBrONNOY6rLOQBHFa5CcK1nQkg5Sg3UDjE7R5SF3G_zHznRRrP0uuH6kIJywnBfAs96VH1wq-K4LphHKRjn8NgZpWwFYDI2KoVExNCq-G-1J-ENug93IsP-XuTgw1hjz6y-h6JfJ6RcA-4OH
CODEN ITISFG
CitedBy_id crossref_primary_10_1007_s11276_023_03627_8
crossref_primary_10_1109_TITS_2022_3202494
crossref_primary_10_3390_wevj16020082
crossref_primary_10_3390_s24237538
crossref_primary_10_1109_TITS_2024_3387942
crossref_primary_10_1109_TITS_2024_3388459
crossref_primary_10_3390_s23062950
crossref_primary_10_3390_systems13040261
crossref_primary_10_1155_2022_2545958
crossref_primary_10_1109_TCSS_2024_3350199
crossref_primary_10_1109_THMS_2024_3407333
crossref_primary_10_3390_s24020484
crossref_primary_10_1109_ACCESS_2023_3315852
crossref_primary_10_1109_TFUZZ_2024_3360946
crossref_primary_10_1080_19439962_2024_2329121
crossref_primary_10_1109_TITS_2022_3215172
crossref_primary_10_1109_TITS_2023_3330061
crossref_primary_10_1109_JIOT_2024_3354771
crossref_primary_10_1109_TIV_2023_3235362
crossref_primary_10_1109_TSMC_2025_3577031
crossref_primary_10_1080_00051144_2024_2327907
crossref_primary_10_1109_JAS_2022_105866
crossref_primary_10_4018_IJISMD_388927
crossref_primary_10_1109_TITS_2023_3248842
crossref_primary_10_1109_TIM_2025_3533660
crossref_primary_10_1109_JIOT_2024_3422659
crossref_primary_10_1109_TETCI_2024_3405910
crossref_primary_10_1016_j_cja_2025_103594
crossref_primary_10_1080_19439962_2023_2208065
crossref_primary_10_1109_TITS_2023_3239606
crossref_primary_10_1016_j_aap_2025_108065
crossref_primary_10_1049_itr2_12345
crossref_primary_10_1016_j_commtr_2025_100170
crossref_primary_10_1109_TIV_2023_3266102
crossref_primary_10_1080_15389588_2025_2469112
crossref_primary_10_1109_TVT_2025_3557184
crossref_primary_10_1016_j_aap_2024_107830
crossref_primary_10_1007_s42524_023_0293_x
crossref_primary_10_1016_j_aap_2024_107913
crossref_primary_10_1007_s00521_024_10537_z
crossref_primary_10_1109_TVT_2023_3326686
crossref_primary_10_3390_s22134808
Cites_doi 10.1109/ITSC.2017.8317913
10.1016/j.aap.2019.02.029
10.1080/15389588.2015.1014551
10.1109/IVS.2013.6629564
10.1016/j.trc.2016.11.011
10.1109/JIOT.2014.2327587
10.1016/j.aap.2016.07.038
10.1016/j.trc.2014.12.005
10.1109/ITSC.2018.8569595
10.12720/jtle.3.1.18-24
10.1016/j.trc.2016.03.009
10.1016/j.trc.2010.04.006
10.1016/j.trf.2018.01.003
10.1016/j.trf.2015.03.009
10.1109/LRA.2017.2660543
10.1061/(ASCE)IS.1943-555X.0000167
10.1016/j.trc.2016.02.016
10.1016/j.aap.2018.07.002
10.1109/TITS.2014.2328357
10.1016/j.trc.2016.04.008
10.1016/j.aap.2018.06.007
10.1016/j.aap.2018.04.013
10.1109/IVS.2014.6856491
10.1016/j.trc.2018.05.017
10.1007/s12239-015-0075-5
10.1109/TITS.2018.2800086
10.1016/j.annemergmed.2011.05.030
10.1155/2018/8645709
10.1016/j.ssci.2012.05.007
10.1049/iet-its.2014.0139
10.1016/j.trc.2017.08.004
10.1016/j.trc.2017.09.023
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2020.3019050
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) Online
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 981
ExternalDocumentID 10_1109_TITS_2020_3019050
9186817
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U1664262; 51775396; 51678460
  funderid: 10.13039/501100001809
– fundername: Wuhan Science and Technology Bureau Enterprise Technology Innovation Project
  grantid: 2018010402011175
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-f6b4ec04349d27121ab8a47d0ef64d4d03d9b51c2c6b1a66ca83939b51f0df143
IEDL.DBID RIE
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000750200400024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sun Nov 09 07:13:57 EST 2025
Tue Nov 18 22:30:38 EST 2025
Sat Nov 29 06:34:55 EST 2025
Wed Aug 27 03:00:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-f6b4ec04349d27121ab8a47d0ef64d4d03d9b51c2c6b1a66ca83939b51f0df143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0926-9140
PQID 2624768165
PQPubID 75735
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TITS_2020_3019050
crossref_primary_10_1109_TITS_2020_3019050
proquest_journals_2624768165
ieee_primary_9186817
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
vapnik (ref32) 1998
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref11
abid (ref20) 2012
ref2
ref1
ref39
ref38
ref16
ref19
ref18
blincoe (ref27) 2002
hill (ref21) 2011
jinshuan (ref36) 2011; 33
ref24
ref23
ref26
ref25
sayer (ref6) 2011; 58
ref22
ref28
henclewood (ref17) 2014
ref29
ref8
ref7
ref9
ref4
ref3
xi (ref37) 2015; 6
lyu (ref10) 2018
ref5
ref40
nenggchao (ref41) 2020; 20
References_xml – ident: ref39
  doi: 10.1109/ITSC.2017.8317913
– ident: ref2
  doi: 10.1016/j.aap.2019.02.029
– volume: 33
  start-page: 46
  year: 2011
  ident: ref36
  article-title: Research of driver's lane change decision-making mechanism
  publication-title: J Wuhan Univ Technol
– ident: ref22
  doi: 10.1080/15389588.2015.1014551
– ident: ref11
  doi: 10.1109/IVS.2013.6629564
– ident: ref1
  doi: 10.1016/j.trc.2016.11.011
– start-page: 72
  year: 2012
  ident: ref20
  article-title: Performance analysis of LTE smartphones-based vehicle-to-infrastructure communication
  publication-title: Proc 9th Int Conf Ubiquitous Intell Comput
– ident: ref18
  doi: 10.1109/JIOT.2014.2327587
– ident: ref5
  doi: 10.1016/j.aap.2016.07.038
– ident: ref16
  doi: 10.1016/j.trc.2014.12.005
– volume: 6
  start-page: 328
  year: 2015
  ident: ref37
  article-title: Open-loop model of drivers' emergency lane-change behavior based on the naturalistic
  publication-title: J Automotive Safety and Energy
– ident: ref38
  doi: 10.1109/ITSC.2018.8569595
– ident: ref28
  doi: 10.12720/jtle.3.1.18-24
– ident: ref29
  doi: 10.1016/j.trc.2016.03.009
– ident: ref8
  doi: 10.1016/j.trc.2010.04.006
– ident: ref9
  doi: 10.1016/j.trf.2018.01.003
– year: 2018
  ident: ref10
  article-title: Evaluating the effectiveness of advanced driver assistance systems in near-crash events using safety margins
  publication-title: Proc 97th Transp Res Board Annu Meeting
– ident: ref40
  doi: 10.1016/j.trf.2015.03.009
– ident: ref13
  doi: 10.1109/LRA.2017.2660543
– ident: ref24
  doi: 10.1061/(ASCE)IS.1943-555X.0000167
– ident: ref23
  doi: 10.1016/j.trc.2016.02.016
– ident: ref26
  doi: 10.1016/j.aap.2018.07.002
– ident: ref7
  doi: 10.1109/TITS.2014.2328357
– year: 2011
  ident: ref21
  publication-title: AASHTO Connected Vehicle Infrastructure Deployment Analysis
– ident: ref25
  doi: 10.1016/j.trc.2016.04.008
– ident: ref3
  doi: 10.1016/j.aap.2018.06.007
– year: 1998
  ident: ref32
  publication-title: Statistical Learning Theory
– year: 2002
  ident: ref27
  publication-title: The Economic Impact of Motor Vehicle Crashes
– ident: ref34
  doi: 10.1016/j.aap.2018.04.013
– ident: ref12
  doi: 10.1109/IVS.2014.6856491
– ident: ref14
  doi: 10.1016/j.trc.2018.05.017
– year: 2014
  ident: ref17
  publication-title: Safety Pilot Model Deployment One Day Sample Data Environment Data Handbook
– ident: ref4
  doi: 10.1007/s12239-015-0075-5
– ident: ref35
  doi: 10.1109/TITS.2018.2800086
– volume: 58
  start-page: 205
  year: 2011
  ident: ref6
  article-title: Integrated vehicle-based safety systems light-vehicle field operational test key findings report
  publication-title: Ann Emergency Med
  doi: 10.1016/j.annemergmed.2011.05.030
– ident: ref15
  doi: 10.1155/2018/8645709
– ident: ref33
  doi: 10.1016/j.ssci.2012.05.007
– ident: ref31
  doi: 10.1049/iet-its.2014.0139
– volume: 20
  start-page: 172
  year: 2020
  ident: ref41
  article-title: Forward collision warning algorithm optimization and calibration based on objective risk perception characteristic
  publication-title: International Journal for Traffic and Transport Engineering
– ident: ref30
  doi: 10.1016/j.trc.2017.08.004
– ident: ref19
  doi: 10.1016/j.trc.2017.09.023
SSID ssj0014511
Score 2.5610895
Snippet Side collisions caused by sudden vehicle cut-ins comprise a significant proportion of traffic accidents. Due to the complex and dynamic nature of traffic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 966
SubjectTerms Accidents
Advanced driver assistance systems
Alarm systems
Algorithms
Collision avoidance
cut-in collisions
Lane changing
long-term and short-term memory networks
Prediction models
Predictive models
Safety
support vector machine
Support vector machines
Traffic accidents
Trajectory
Vehicle dynamics
vehicle-to-vehicle communication
Vehicles
Warning
Title Vehicle Trajectory Prediction and Cut-In Collision Warning Model in a Connected Vehicle Environment
URI https://ieeexplore.ieee.org/document/9186817
https://www.proquest.com/docview/2624768165
Volume 23
WOSCitedRecordID wos000750200400024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH848aAHv6Y4v8jBk1iXtmmyHGVsuMsYOHW30uYDJ6OT2Qn-9-Zl3RwogrfSJm3or-n7_L0HcKVsbltShUFuYxM4EeC2FBdZEFuRyFxYHWa5bzYh-v3WaCQHG3Cz4sIYY3zymbnFQx_L11M1R1dZU2Jt91DUoCYEX3C1VhEDrLPla6NGLJA0WUYwQyqbw97wwVmCkTNQkTmNFPs1GeSbqvz4E3vx0t3738L2YbdSI8ndAvcD2DDFIeysFResg3oyL3iROHH06n3zn2Qww7gMYkGyQpP2vAx6BUHngaeYk-eFn4Rgh7QJGbtRxGfCKKeXkuX9Ot_cuCN47HaG7fugaqkQKCfXy8DynBlFWcykjkQYOSRaGROaGsuZZprGWuZJqCLF8zDjXGVOgYrxlKXaOt3qGDaLaWFOgAihqI1lollinFDLUNGMbdJyz3EqF4sbQJcvOVVVvXFsezFJvd1BZYq4pIhLWuHSgOvVlLdFsY2_BtcRiNXACoMGnC-RTKvt-J5GPGLOrgp5cvr7rDPYjpDX4NOxz2GznM3NBWypj3L8Prv0X9oXQRbQGA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH7UKqgHtyrWdQ6exNhJMsl0jlJaLGopWLW3kMyCFYnSRfDfO2-a1oIieAvJTBLyJfneMt97AGfSZKYupO9lJtSepQD7ScU89ULDI5Fxo_w0c80meKdT7_dFtwQXcy2M1totPtOXuOly-epNTjBUVhNY293nS7AcWR6lU7XWPGeAlbZcddSAeYJGsxymT0Wt1-7dW18wsC4qaqdRZL_AQq6tyo9_sSOY1ub_bm0LNgpDklxNkd-Gks53YH2hvGAF5KN-xoPEEtKLi85_ku4QMzOIBklzRRqTsdfOCYYPnMicPE0jJQR7pL2SgR1F3FoYaS1TMjtf81sdtwsPrWavce0VTRU8aZl97Jk4Y1pSFjKhAu4HFot6yrii2sRMMUVDJbLIl4GMMz-NY5laEyrEXYYqY62rPSjnb7neB8K5pCYUkWKRtrSWoqkZmqhur2ONLhZWgc4eciKLiuPY-OI1cZ4HFQnikiAuSYFLFc7nU96n5Tb-GlxBIOYDCwyqcDRDMik-yFESxAGznpUfRwe_zzqF1eve3W1y2-7cHMJagCoHtzj7CMrj4UQfw4r8GA9GwxP31n0BThrTZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vehicle+Trajectory+Prediction+and+Cut-In+Collision+Warning+Model+in+a+Connected+Vehicle+Environment&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Lyu%2C+Nengchao&rft.au=Wen%2C+Jiaqiang&rft.au=Duan%2C+Zhicheng&rft.au=Wu%2C+Chaozhong&rft.date=2022-02-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=23&rft.issue=2&rft.spage=966&rft.epage=981&rft_id=info:doi/10.1109%2FTITS.2020.3019050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2020_3019050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon