Sparse Reconstruction for Radar Imaging Based on Quantum Algorithms
The sparse-driven radar imaging can obtain high-resolution images about a target scene with the down-sampled data. However, the huge computational complexity of the classical sparse recovery method for the particular situation seriously affects the practicality of the sparse imaging technology. In t...
Uloženo v:
| Vydáno v: | IEEE geoscience and remote sensing letters Ročník 19; s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1545-598X, 1558-0571 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The sparse-driven radar imaging can obtain high-resolution images about a target scene with the down-sampled data. However, the huge computational complexity of the classical sparse recovery method for the particular situation seriously affects the practicality of the sparse imaging technology. In this letter, this is the first time the quantum algorithms are applied to the image recovery for the radar sparse imaging. First, the radar sparse imaging problem is analyzed and the calculation problem to be solved by quantum algorithms is determined. Then, the corresponding quantum circuit and its parameters are designed to ensure extremely low computational complexity, and the quantum-enhanced reconstruction algorithm for sparse imaging is proposed. Finally, the computational complexity of the proposed method is analyzed, and the simulation experiments with the raw radar data are illustrated to verify the validity of the proposed method. |
|---|---|
| AbstractList | The sparse-driven radar imaging can obtain high-resolution images about a target scene with the down-sampled data. However, the huge computational complexity of the classical sparse recovery method for the particular situation seriously affects the practicality of the sparse imaging technology. In this letter, this is the first time the quantum algorithms are applied to the image recovery for the radar sparse imaging. First, the radar sparse imaging problem is analyzed and the calculation problem to be solved by quantum algorithms is determined. Then, the corresponding quantum circuit and its parameters are designed to ensure extremely low computational complexity, and the quantum-enhanced reconstruction algorithm for sparse imaging is proposed. Finally, the computational complexity of the proposed method is analyzed, and the simulation experiments with the raw radar data are illustrated to verify the validity of the proposed method. |
| Author | Luo, Ying Liu, Yong Liu, Xiaowen Kang, Le Zhang, Qun Dong, Chen |
| Author_xml | – sequence: 1 givenname: Xiaowen orcidid: 0000-0002-4870-1522 surname: Liu fullname: Liu, Xiaowen email: lxw5054@163.com organization: College of Information and Communication, National University of Defense Technology, Xi'an, China – sequence: 2 givenname: Chen surname: Dong fullname: Dong, Chen email: dongchengfkd@163.com organization: College of Information and Communication, National University of Defense Technology, Xi'an, China – sequence: 3 givenname: Ying orcidid: 0000-0003-1460-4289 surname: Luo fullname: Luo, Ying email: luoying2002521@163.com organization: Institute of Information and Navigation, Air Force Engineering University, Xi'an, China – sequence: 4 givenname: Le orcidid: 0000-0001-8484-8794 surname: Kang fullname: Kang, Le email: 18810495946@163.com organization: Institute of Information and Navigation, Air Force Engineering University, Xi'an, China – sequence: 5 givenname: Yong surname: Liu fullname: Liu, Yong email: yongliu@quanta.org.cn organization: College of Information and Communication, National University of Defense Technology, Xi'an, China – sequence: 6 givenname: Qun orcidid: 0000-0002-2773-3437 surname: Zhang fullname: Zhang, Qun email: zhangqunnus@gmail.com organization: Institute of Information and Navigation, Air Force Engineering University, Xi'an, China |
| BookMark | eNp9kE1LAzEQhoMo2FZ_gHhZ8Lx1kmy-jrVoLRTEVsFbyKbZuqXd1CR78N-7S4sHD55mYN5nhnmG6LzxjUPoBsMYY1D3i9lyNSZA8JhiKICoMzTAjMkcmMDnfV-wnCn5cYmGMW4BSCGlGKDp6mBCdNnSWd_EFFqbat9klQ_Z0qxNyOZ7s6mbTfZgoltn3ei1NU1q99lkt_GhTp_7eIUuKrOL7vpUR-j96fFt-pwvXmbz6WSRW6JoyitOuCihKqx0sgIuGWGl5OAENiU3FCvJK8qEKKVwgEuuLKxJoUrDiQELdITujnsPwX-1Lia99W1oupOa8E6CAkxZlxLHlA0-xuAqbetk-q9SMPVOY9C9Md0b070xfTLWkfgPeQj13oTvf5nbI1M7537zimFBMac_n2l3iA |
| CODEN | IGRSBY |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3531407 crossref_primary_10_1080_01431161_2024_2339204 crossref_primary_10_1109_LGRS_2024_3517135 |
| Cites_doi | 10.1109/TCI.2017.2750330 10.1109/JSTARS.2013.2263309 10.1109/TCI.2019.2948776 10.1109/TIP.2016.2556582 10.1109/TAES.2018.2807283 10.1109/TIP.2019.2957939 10.1017/cbo9780511976667 10.1109/LGRS.2019.2943069 10.1109/TGRS.2019.2958067 10.1103/PhysRevLett.103.150502 10.1109/MSP.2014.2312834 10.23919/IRS.2019.8768138 10.1109/TGRS.2018.2803802 10.1038/nphys3272 10.1109/TAP.2017.2734165 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| DOI | 10.1109/LGRS.2021.3104029 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Libary (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1558-0571 |
| EndPage | 5 |
| ExternalDocumentID | 10_1109_LGRS_2021_3104029 9517316 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61871396 funderid: 10.13039/501100001809 – fundername: Innovative Talents Promotion Plan in Shaanxi Province grantid: 2020KJXX-011 – fundername: National University of Defense Technology grantid: 19-QNCXJ funderid: 10.13039/501100007085 – fundername: Key Research and Development Program of Shaanxi grantid: 2019ZDLGY09-01 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-f6267b0f4c8e8f068525b860e71ab6a31986f3577b87e01b69c0d249ba62a0c03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000731151800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-598X |
| IngestDate | Mon Jun 30 12:41:59 EDT 2025 Sat Nov 29 05:54:08 EST 2025 Tue Nov 18 22:23:52 EST 2025 Wed Aug 27 05:11:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-f6267b0f4c8e8f068525b860e71ab6a31986f3577b87e01b69c0d249ba62a0c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2773-3437 0000-0002-4870-1522 0000-0001-8484-8794 0000-0003-1460-4289 |
| PQID | 2610990135 |
| PQPubID | 75725 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9517316 crossref_citationtrail_10_1109_LGRS_2021_3104029 proquest_journals_2610990135 crossref_primary_10_1109_LGRS_2021_3104029 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE geoscience and remote sensing letters |
| PublicationTitleAbbrev | LGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref2 doi: 10.1109/TCI.2017.2750330 – ident: ref5 doi: 10.1109/JSTARS.2013.2263309 – ident: ref7 doi: 10.1109/TCI.2019.2948776 – ident: ref6 doi: 10.1109/TIP.2016.2556582 – ident: ref11 doi: 10.1109/TAES.2018.2807283 – ident: ref9 doi: 10.1109/TIP.2019.2957939 – ident: ref13 doi: 10.1017/cbo9780511976667 – ident: ref12 doi: 10.1109/LGRS.2019.2943069 – ident: ref4 doi: 10.1109/TGRS.2019.2958067 – ident: ref14 doi: 10.1103/PhysRevLett.103.150502 – ident: ref3 doi: 10.1109/MSP.2014.2312834 – ident: ref10 doi: 10.23919/IRS.2019.8768138 – ident: ref1 doi: 10.1109/TGRS.2018.2803802 – ident: ref15 doi: 10.1038/nphys3272 – ident: ref8 doi: 10.1109/TAP.2017.2734165 |
| SSID | ssj0024887 |
| Score | 2.3491352 |
| Snippet | The sparse-driven radar imaging can obtain high-resolution images about a target scene with the down-sampled data. However, the huge computational complexity... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Circuit design Complexity Compressive sensing (CS) Computational complexity Computer applications Image reconstruction Image resolution Imaging Imaging techniques Logic gates Mathematical model quantum algorithm Quantum circuit Radar Radar data Radar imaging Recovery Registers sparse recovery |
| Title | Sparse Reconstruction for Radar Imaging Based on Quantum Algorithms |
| URI | https://ieeexplore.ieee.org/document/9517316 https://www.proquest.com/docview/2610990135 |
| Volume | 19 |
| WOSCitedRecordID | wos000731151800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Libary (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED42UfTFH5vidEoefBLr0rRN0sc5dApjqFPZW2nSVAW3yX4I_vdesro9KIJvhSalfJf07sv17gM4yahmOspCT6aaeWGW5p7089ALlQ5kFnMt3FH2U0d0u7Lfj29LcLaohTHGuJ_PzLm9dLn8bKRn9qisgdGAFVoqQ1kIPq_VWvbVk04Mz0YEXhTLfpHB9Gnc6LTve8gEmY8EFdesiyaXPsiJqvz4Ejv3crX1vxfbhs0ijCTNud13oGSGFVgvFM1fPiuw1naSvZ9VaPXekbwaYonmsl0swWCV3KdZOiY3A6dURC7QoWUEb93NEO7ZgDTfnkfj1-nLYLILj1eXD61rr5BO8DT676mXI08RiuahlkbmlMuIRUpyaoSfKp7ivpM8DyIhlBSG-orHmmbIxFTKWUo1DfZgZTgamn0g-Ci0phZItUyoGFWMGRMJFgVMofuLa0C_wUx00Vfcylu8JY5f0Dix-CcW_6TAvwaniynv86Yafw2uWsAXAwusa1D_tlhSbLtJwvg80RdEB7_POoQNZusX3BlKHVYQdHMEq_pj-joZH7sV9QWte8Y5 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BAcGFHVFWHzghAo4Tx84RKqCIUrGrtyh2HEDqpi5I_XvGbmgPICRukWJH0Rs7M8-TmQdwlFHNNM9CT6aaeWGW5p7089ALlQ5kFkdauKPs15qo12WjEd_PwMmkFsYY434-M6f20uXys44e2qOyM4wGrNDSLMzxMGR0XK017awnnRyejQk8HstGkcP0aXxWu358Qi7IfKSouGpdPDn1Qk5W5ce32DmYq5X_vdoqLBeBJDkfW34NZkx7HRYLTfP30TosXDvR3tEGVJ66SF8NsVRz2jCWYLhKHtMs7ZGbltMqIhfo0jKCtx6GCPiwRc6bb53ex-C91d-El6vL50rVK8QTPI0efODlyFSEonmopZE5jSRnXMmIGuGnKkpx58koD7gQSgpDfRXFmmbIxVQasZRqGmxBqd1pm20g-Ci0pxZItkyoGFWMGcMF4wFT6ADjMtBvMBNddBa3AhfNxDEMGicW_8TinxT4l-F4MqU7bqvx1-ANC_hkYIF1Gfa-LZYUG6-fsGic6gv4zu-zDmGx-nxXS2o39dtdWGK2msGdqOxBCQ1g9mFefw4--r0Dt7q-ACvEyYA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Reconstruction+for+Radar+Imaging+Based+on+Quantum+Algorithms&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Liu%2C+Xiaowen&rft.au=Dong%2C+Chen&rft.au=Luo%2C+Ying&rft.au=Kang%2C+Le&rft.date=2022&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2021.3104029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2021_3104029 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |