Uncovering Spatial Invasion on Metapopulation Networks with SIR Epidemics

Understanding how infectious diseases spatially diffuse is critical to predict and control the epidemic prevalence. However, uncovering epidemic spatial invasion is challenging due to stochastic travel of hosts and insufficient data availability. In this study, we develop a methodology for inferring...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on network science and engineering Vol. 6; no. 4; pp. 788 - 800
Main Authors: Wang, Jian-Bo, Li, Xiang
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2327-4697, 2334-329X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Understanding how infectious diseases spatially diffuse is critical to predict and control the epidemic prevalence. However, uncovering epidemic spatial invasion is challenging due to stochastic travel of hosts and insufficient data availability. In this study, we develop a methodology for inferring global invasion pathways on metapopulation networks with the susceptible-infected-recovered (SIR) epidemics. To solve the inference problem, we infer the invasion pathways of each invasion case as a subgraph containing a part of global invasion pathways at each epidemic arrival time. We first develop a reduction approach to decrease the sizes of the dominant invasion cases, and propose a local optimization method aiming at the SIR epidemics based on epidemic maximum diffusion (EMD) to infer spatial invasion pathways of the reduced invasion cases, and reconstruct the global invasion pathways. Compared with the previous work, we reduce the computational complexity of invasion cases, and improve the calculation of epidemic diffusion likelihood and effectiveness of the algorithm for epidemic recovery. Simulations on real and synthetic metapopulation networks verify the validity of our algorithm. Finally, an empirical example of the 2009 A (H1N1) in the USA is presented to uncover the spatial invasion pathways and identify the superinvaders.
AbstractList Understanding how infectious diseases spatially diffuse is critical to predict and control the epidemic prevalence. However, uncovering epidemic spatial invasion is challenging due to stochastic travel of hosts and insufficient data availability. In this study, we develop a methodology for inferring global invasion pathways on metapopulation networks with the susceptible-infected-recovered (SIR) epidemics. To solve the inference problem, we infer the invasion pathways of each invasion case as a subgraph containing a part of global invasion pathways at each epidemic arrival time. We first develop a reduction approach to decrease the sizes of the dominant invasion cases, and propose a local optimization method aiming at the SIR epidemics based on epidemic maximum diffusion (EMD) to infer spatial invasion pathways of the reduced invasion cases, and reconstruct the global invasion pathways. Compared with the previous work, we reduce the computational complexity of invasion cases, and improve the calculation of epidemic diffusion likelihood and effectiveness of the algorithm for epidemic recovery. Simulations on real and synthetic metapopulation networks verify the validity of our algorithm. Finally, an empirical example of the 2009 A (H1N1) in the USA is presented to uncover the spatial invasion pathways and identify the superinvader s.
Understanding how infectious diseases spatially diffuse is critical to predict and control the epidemic prevalence. However, uncovering epidemic spatial invasion is challenging due to stochastic travel of hosts and insufficient data availability. In this study, we develop a methodology for inferring global invasion pathways on metapopulation networks with the susceptible-infected-recovered (SIR) epidemics. To solve the inference problem, we infer the invasion pathways of each invasion case as a subgraph containing a part of global invasion pathways at each epidemic arrival time. We first develop a reduction approach to decrease the sizes of the dominant invasion cases, and propose a local optimization method aiming at the SIR epidemics based on epidemic maximum diffusion (EMD) to infer spatial invasion pathways of the reduced invasion cases, and reconstruct the global invasion pathways. Compared with the previous work, we reduce the computational complexity of invasion cases, and improve the calculation of epidemic diffusion likelihood and effectiveness of the algorithm for epidemic recovery. Simulations on real and synthetic metapopulation networks verify the validity of our algorithm. Finally, an empirical example of the 2009 A (H1N1) in the USA is presented to uncover the spatial invasion pathways and identify the superinvaders.
Author Li, Xiang
Wang, Jian-Bo
Author_xml – sequence: 1
  givenname: Jian-Bo
  orcidid: 0000-0002-1479-3107
  surname: Wang
  fullname: Wang, Jian-Bo
  email: jianbowang11@fudan.edu.cn
  organization: Department of Electronic Engineering, and the Research Center of Smart Networks and Systems, School of Information Science and Engineering, Adaptive Networks and Control Laboratory, Fudan University, Shanghai, China
– sequence: 2
  givenname: Xiang
  orcidid: 0000-0002-6482-2535
  surname: Li
  fullname: Li, Xiang
  email: lix@fudan.edu.cn
  organization: Adaptive Networks and Control Laboratory, Department of Electronic Engineering, and the >Research Center of Smart Networks and Systems, School of Information Science and Engineering, Fudan University, Shanghai, China
BookMark eNp9kE1LAzEQhoMoWGt_gHhZ8Lw1yWQ_cpRSdaFWsC14C9k0q6ntZk3SFv-9u7Z48CAMzAwz7wzvc4FOa1trhK4IHhKC-e18OhsPKSb5kOYZpJifoB4FYDFQ_nra1TSLWcqzczTwfoUxJjRPAaCHikWt7E47U79Fs0YGI9dRUe-kN7aO2njSQTa22a7bUdtOddhb9-GjvQnv0ax4icaNWeqNUf4SnVVy7fXgmPtocT-ejx7jyfNDMbqbxIpyCHHFFGYapxwSpZY6J1CyFFjCE1qRShKZgKaEYswh1Rp4iRPATGIsq2VZVgr66OZwt3H2c6t9ECu7dXX7UrQ-aZYlHYQ-yg5bylnvna6EMuHHQ3DSrAXBokMnOnSiQyeO6Fol-aNsnNlI9_Wv5vqgMVrr3_2c5Qm0Br8B3sV7WA
CODEN ITNSD5
CitedBy_id crossref_primary_10_1016_j_chaos_2025_116211
crossref_primary_10_1109_TCSS_2022_3214108
crossref_primary_10_1109_TCSS_2023_3339551
crossref_primary_10_1109_ACCESS_2019_2909552
crossref_primary_10_1109_TITS_2021_3061076
crossref_primary_10_1088_1367_2630_acd0cd
crossref_primary_10_1209_0295_5075_134_58001
crossref_primary_10_1109_TNSE_2022_3211988
crossref_primary_10_1209_0295_5075_acfab8
crossref_primary_10_1016_j_chaos_2023_114299
crossref_primary_10_1109_TCSS_2021_3129309
crossref_primary_10_3389_fphy_2023_1021565
Cites_doi 10.1109/TCYB.2015.2489702
10.1007/978-981-10-5287-3_6
10.1126/science.286.5439.509
10.1098/rsif.2010.0216
10.1016/j.jtbi.2007.12.001
10.1145/3038912.3052678
10.1109/TNSE.2016.2523804
10.1038/nature06536
10.1098/rstb.2004.1480
10.1126/science.1245200
10.1088/1367-2630/12/9/093009
10.1186/s12916-014-0196-0
10.1038/ncomms15729
10.1109/TKDE.2015.2436918
10.1109/JPROC.2015.2389146
10.1126/science.aag0219
10.1016/0025-5564(85)90064-1
10.1016/S0140-6736(16)31838-4
10.1371/journal.pone.0021197
10.1073/pnas.0400087101
10.1515/9781400841035
10.1126/science.1176062
10.1073/pnas.0906910106
10.1088/0034-4885/77/2/026602
10.1126/science.1177373
10.1038/nature14348
10.1109/TIT.2011.2158885
10.1093/oso/9780198545996.001.0001
10.1007/s11434-014-0499-8
10.1056/NEJMra1109341
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2018.2873609
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 2334-329X
EndPage 800
ExternalDocumentID 10_1109_TNSE_2018_2873609
8485381
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Fund for Distinguished Young Scholar of China
  grantid: 61425019
– fundername: Natural Science Foundation of Shanghai
  grantid: 16ZR1446400
  funderid: 10.13039/100007219
– fundername: National Natural Science Foundation of China
  grantid: 71731004; 61603097
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c293t-f4c04e06935ccde813b46345952f1fa1a53e21200936ee39b05304a00afdbbfc3
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502281600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4697
IngestDate Mon Jun 30 08:38:48 EDT 2025
Sat Nov 29 04:55:49 EST 2025
Tue Nov 18 22:11:38 EST 2025
Wed Aug 27 02:39:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-f4c04e06935ccde813b46345952f1fa1a53e21200936ee39b05304a00afdbbfc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6482-2535
0000-0002-1479-3107
PQID 2322775287
PQPubID 2040409
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TNSE_2018_2873609
crossref_primary_10_1109_TNSE_2018_2873609
proquest_journals_2322775287
ieee_primary_8485381
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
anderson (ref13) 1991
ref15
ref14
ref31
ref30
ref11
ref32
ref10
tsan-yuk lam (ref6) 2015; 522
ref2
(ref33) 2009
ref1
ref17
ref16
ref19
ref18
heesterbeek (ref3) 2015; 347
ref24
gomez-rodriguez (ref20) 2010
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref5
References_xml – ident: ref28
  doi: 10.1109/TCYB.2015.2489702
– ident: ref30
  doi: 10.1007/978-981-10-5287-3_6
– ident: ref32
  doi: 10.1126/science.286.5439.509
– ident: ref24
  doi: 10.1098/rsif.2010.0216
– ident: ref25
  doi: 10.1016/j.jtbi.2007.12.001
– ident: ref7
  doi: 10.1145/3038912.3052678
– start-page: 1019
  year: 2010
  ident: ref20
  article-title: Inferring net-works of diffusion and influence
  publication-title: Proc ACM SIGKDD Conf Knowledge Discovery Data Mining
– ident: ref23
  doi: 10.1109/TNSE.2016.2523804
– ident: ref1
  doi: 10.1038/nature06536
– ident: ref11
  doi: 10.1098/rstb.2004.1480
– ident: ref27
  doi: 10.1126/science.1245200
– ident: ref19
  doi: 10.1088/1367-2630/12/9/093009
– ident: ref8
  doi: 10.1186/s12916-014-0196-0
– ident: ref21
  doi: 10.1038/ncomms15729
– year: 2009
  ident: ref33
– ident: ref18
  doi: 10.1109/TKDE.2015.2436918
– volume: 347
  year: 2015
  ident: ref3
  article-title: Modeling infectious disease dynamics in the complex landscape of global health
  publication-title: Sci
– ident: ref2
  doi: 10.1109/JPROC.2015.2389146
– ident: ref10
  doi: 10.1126/science.aag0219
– ident: ref16
  doi: 10.1016/0025-5564(85)90064-1
– ident: ref9
  doi: 10.1016/S0140-6736(16)31838-4
– ident: ref29
  doi: 10.1371/journal.pone.0021197
– ident: ref31
  doi: 10.1073/pnas.0400087101
– ident: ref14
  doi: 10.1515/9781400841035
– ident: ref5
  doi: 10.1126/science.1176062
– ident: ref26
  doi: 10.1073/pnas.0906910106
– ident: ref15
  doi: 10.1088/0034-4885/77/2/026602
– ident: ref4
  doi: 10.1126/science.1177373
– volume: 522
  start-page: 102
  year: 2015
  ident: ref6
  article-title: Dissemination, divergence and establishment of H7N9 influenza viruses in China
  publication-title: Nature
  doi: 10.1038/nature14348
– ident: ref22
  doi: 10.1109/TIT.2011.2158885
– year: 1991
  ident: ref13
  publication-title: Infectious Diseases of Humans Dynamics and Control
  doi: 10.1093/oso/9780198545996.001.0001
– ident: ref17
  doi: 10.1007/s11434-014-0499-8
– ident: ref12
  doi: 10.1056/NEJMra1109341
SSID ssj0001286333
Score 2.1907454
Snippet Understanding how infectious diseases spatially diffuse is critical to predict and control the epidemic prevalence. However, uncovering epidemic spatial...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 788
SubjectTerms Algorithms
Computational modeling
Computer simulation
Disease control
Epidemic maximum diffusion
Epidemics
Graph theory
Heuristic algorithms
Infectious diseases
Inference algorithm
Inference algorithms
Local optimization
Metapopulation network
Networks
SIR model
Sociology
Spatial invasion pathways
Statistics
Surveillance
Title Uncovering Spatial Invasion on Metapopulation Networks with SIR Epidemics
URI https://ieeexplore.ieee.org/document/8485381
https://www.proquest.com/docview/2322775287
Volume 6
WOSCitedRecordID wos000502281600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2334-329X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286333
  issn: 2327-4697
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4WEe_NgUp1Ny8CR2a5e2SY8iGw50iNtgt5KmLyfpxr7-fl_argwUQegh0CQN-b30feR9ADygMigjJR1puHLszR61vMQJUIeCowj6SY70mxiP5XwefdTgqYqFQcTc-Qy7tpnf5acLvbWmsp70ibnYOOsjIUQRq3VgT5Eh57y8uPTcqDcdTwbWd0t2SSvgoXU5PGA9eS2VHz_gnKsMz_63nnM4LaVH9lzAfQE1zJpwcpBTsAkNKz4W2ZdbMJpl2vpo0htmiw8TsbFRtlPWRMboeceNWlYlvNi48AlfM2udZZPRJxsUBWT1-hJmw8H05dUpiyc4mjj4xjG-dn10w4gHWqcoPZ74IfeDKOgbzyhPBRyJbVmLRojIo4ROo-sr11UmTRKj-RXUs0WG18AkSUnaN6SKkSzgJzR9KNDra2HSgD4i2uDu9zXWZWZxW-DiK841DDeKLRSxhSIuoWjDYzVkWaTV-Ktzy-591bHc9jZ09uDF5cFbxyQg9gVRmBQ3v4-6hQbNHRX-eB2ob1ZbvINjvSNoVvc5TX0DigTKAg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_IFJwHv6Y4nZqDJ7Fb26RtehTZWHEWcRN2K2n2cpIqbu7v96XtxkARhB4CTZqQ30vfR94HwA0qgzJW0pGGK8fe7FHLy50AdRhxjAI_L5EeRWkqp9P4eQvu1rEwiFg6n2HXNsu7_Nm7_rKmsp4UxFxsnPV2IITvVdFaGxYVGXLO66tLz417k3Tct95bskt6AQ-t0-EG8ymrqfz4BZd8ZXDwvxUdwn4tP7L7CvAj2MLiGPY2sgoeQ9MKkFX-5RYkr4W2Xpr0htnyw0RuLCmWyhrJGD1PuFAf6yJeLK28wufM2mfZOHlh_aqErJ6fwOugP3kYOnX5BEcTD184RmhXoBvGPNB6htLjuQi5COLAN55Rngo4EuOyNo0Qkcc5nUdXKNdVZpbnRvNTaBTvBZ4BkyQnaWFIGSNpQOT0-TBCz9eRmQU0SdQGd7Wvma5zi9sSF29ZqWO4cWahyCwUWQ1FG27XQz6qxBp_dW7ZvV93rLe9DZ0VeFl99OYZiYh-RDQmo_PfR13D7nDyNMpGSfp4AU2aJ6688zrQWHx-4SXs6CXB9HlV0tc3NhXNSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+Spatial+Invasion+on+Metapopulation+Networks+with+SIR+Epidemics&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Wang%2C+Jian-Bo&rft.au=Li%2C+Xiang&rft.date=2019-10-01&rft.issn=2327-4697&rft.eissn=2334-329X&rft.volume=6&rft.issue=4&rft.spage=788&rft.epage=800&rft_id=info:doi/10.1109%2FTNSE.2018.2873609&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSE_2018_2873609
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon