Uncovering Spatial Invasion on Metapopulation Networks with SIR Epidemics
Understanding how infectious diseases spatially diffuse is critical to predict and control the epidemic prevalence. However, uncovering epidemic spatial invasion is challenging due to stochastic travel of hosts and insufficient data availability. In this study, we develop a methodology for inferring...
Saved in:
| Published in: | IEEE transactions on network science and engineering Vol. 6; no. 4; pp. 788 - 800 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2327-4697, 2334-329X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Understanding how infectious diseases spatially diffuse is critical to predict and control the epidemic prevalence. However, uncovering epidemic spatial invasion is challenging due to stochastic travel of hosts and insufficient data availability. In this study, we develop a methodology for inferring global invasion pathways on metapopulation networks with the susceptible-infected-recovered (SIR) epidemics. To solve the inference problem, we infer the invasion pathways of each invasion case as a subgraph containing a part of global invasion pathways at each epidemic arrival time. We first develop a reduction approach to decrease the sizes of the dominant invasion cases, and propose a local optimization method aiming at the SIR epidemics based on epidemic maximum diffusion (EMD) to infer spatial invasion pathways of the reduced invasion cases, and reconstruct the global invasion pathways. Compared with the previous work, we reduce the computational complexity of invasion cases, and improve the calculation of epidemic diffusion likelihood and effectiveness of the algorithm for epidemic recovery. Simulations on real and synthetic metapopulation networks verify the validity of our algorithm. Finally, an empirical example of the 2009 A (H1N1) in the USA is presented to uncover the spatial invasion pathways and identify the superinvaders. |
|---|---|
| AbstractList | Understanding how infectious diseases spatially diffuse is critical to predict and control the epidemic prevalence. However, uncovering epidemic spatial invasion is challenging due to stochastic travel of hosts and insufficient data availability. In this study, we develop a methodology for inferring global invasion pathways on metapopulation networks with the susceptible-infected-recovered (SIR) epidemics. To solve the inference problem, we infer the invasion pathways of each invasion case as a subgraph containing a part of global invasion pathways at each epidemic arrival time. We first develop a reduction approach to decrease the sizes of the dominant invasion cases, and propose a local optimization method aiming at the SIR epidemics based on epidemic maximum diffusion (EMD) to infer spatial invasion pathways of the reduced invasion cases, and reconstruct the global invasion pathways. Compared with the previous work, we reduce the computational complexity of invasion cases, and improve the calculation of epidemic diffusion likelihood and effectiveness of the algorithm for epidemic recovery. Simulations on real and synthetic metapopulation networks verify the validity of our algorithm. Finally, an empirical example of the 2009 A (H1N1) in the USA is presented to uncover the spatial invasion pathways and identify the superinvader s. Understanding how infectious diseases spatially diffuse is critical to predict and control the epidemic prevalence. However, uncovering epidemic spatial invasion is challenging due to stochastic travel of hosts and insufficient data availability. In this study, we develop a methodology for inferring global invasion pathways on metapopulation networks with the susceptible-infected-recovered (SIR) epidemics. To solve the inference problem, we infer the invasion pathways of each invasion case as a subgraph containing a part of global invasion pathways at each epidemic arrival time. We first develop a reduction approach to decrease the sizes of the dominant invasion cases, and propose a local optimization method aiming at the SIR epidemics based on epidemic maximum diffusion (EMD) to infer spatial invasion pathways of the reduced invasion cases, and reconstruct the global invasion pathways. Compared with the previous work, we reduce the computational complexity of invasion cases, and improve the calculation of epidemic diffusion likelihood and effectiveness of the algorithm for epidemic recovery. Simulations on real and synthetic metapopulation networks verify the validity of our algorithm. Finally, an empirical example of the 2009 A (H1N1) in the USA is presented to uncover the spatial invasion pathways and identify the superinvaders. |
| Author | Li, Xiang Wang, Jian-Bo |
| Author_xml | – sequence: 1 givenname: Jian-Bo orcidid: 0000-0002-1479-3107 surname: Wang fullname: Wang, Jian-Bo email: jianbowang11@fudan.edu.cn organization: Department of Electronic Engineering, and the Research Center of Smart Networks and Systems, School of Information Science and Engineering, Adaptive Networks and Control Laboratory, Fudan University, Shanghai, China – sequence: 2 givenname: Xiang orcidid: 0000-0002-6482-2535 surname: Li fullname: Li, Xiang email: lix@fudan.edu.cn organization: Adaptive Networks and Control Laboratory, Department of Electronic Engineering, and the >Research Center of Smart Networks and Systems, School of Information Science and Engineering, Fudan University, Shanghai, China |
| BookMark | eNp9kE1LAzEQhoMoWGt_gHhZ8Lw1yWQ_cpRSdaFWsC14C9k0q6ntZk3SFv-9u7Z48CAMzAwz7wzvc4FOa1trhK4IHhKC-e18OhsPKSb5kOYZpJifoB4FYDFQ_nra1TSLWcqzczTwfoUxJjRPAaCHikWt7E47U79Fs0YGI9dRUe-kN7aO2njSQTa22a7bUdtOddhb9-GjvQnv0ax4icaNWeqNUf4SnVVy7fXgmPtocT-ejx7jyfNDMbqbxIpyCHHFFGYapxwSpZY6J1CyFFjCE1qRShKZgKaEYswh1Rp4iRPATGIsq2VZVgr66OZwt3H2c6t9ECu7dXX7UrQ-aZYlHYQ-yg5bylnvna6EMuHHQ3DSrAXBokMnOnSiQyeO6Fol-aNsnNlI9_Wv5vqgMVrr3_2c5Qm0Br8B3sV7WA |
| CODEN | ITNSD5 |
| CitedBy_id | crossref_primary_10_1016_j_chaos_2025_116211 crossref_primary_10_1109_TCSS_2022_3214108 crossref_primary_10_1109_TCSS_2023_3339551 crossref_primary_10_1109_ACCESS_2019_2909552 crossref_primary_10_1109_TITS_2021_3061076 crossref_primary_10_1088_1367_2630_acd0cd crossref_primary_10_1209_0295_5075_134_58001 crossref_primary_10_1109_TNSE_2022_3211988 crossref_primary_10_1209_0295_5075_acfab8 crossref_primary_10_1016_j_chaos_2023_114299 crossref_primary_10_1109_TCSS_2021_3129309 crossref_primary_10_3389_fphy_2023_1021565 |
| Cites_doi | 10.1109/TCYB.2015.2489702 10.1007/978-981-10-5287-3_6 10.1126/science.286.5439.509 10.1098/rsif.2010.0216 10.1016/j.jtbi.2007.12.001 10.1145/3038912.3052678 10.1109/TNSE.2016.2523804 10.1038/nature06536 10.1098/rstb.2004.1480 10.1126/science.1245200 10.1088/1367-2630/12/9/093009 10.1186/s12916-014-0196-0 10.1038/ncomms15729 10.1109/TKDE.2015.2436918 10.1109/JPROC.2015.2389146 10.1126/science.aag0219 10.1016/0025-5564(85)90064-1 10.1016/S0140-6736(16)31838-4 10.1371/journal.pone.0021197 10.1073/pnas.0400087101 10.1515/9781400841035 10.1126/science.1176062 10.1073/pnas.0906910106 10.1088/0034-4885/77/2/026602 10.1126/science.1177373 10.1038/nature14348 10.1109/TIT.2011.2158885 10.1093/oso/9780198545996.001.0001 10.1007/s11434-014-0499-8 10.1056/NEJMra1109341 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TNSE.2018.2873609 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics |
| EISSN | 2334-329X |
| EndPage | 800 |
| ExternalDocumentID | 10_1109_TNSE_2018_2873609 8485381 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Fund for Distinguished Young Scholar of China grantid: 61425019 – fundername: Natural Science Foundation of Shanghai grantid: 16ZR1446400 funderid: 10.13039/100007219 – fundername: National Natural Science Foundation of China grantid: 71731004; 61603097 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c293t-f4c04e06935ccde813b46345952f1fa1a53e21200936ee39b05304a00afdbbfc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502281600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4697 |
| IngestDate | Mon Jun 30 08:38:48 EDT 2025 Sat Nov 29 04:55:49 EST 2025 Tue Nov 18 22:11:38 EST 2025 Wed Aug 27 02:39:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-f4c04e06935ccde813b46345952f1fa1a53e21200936ee39b05304a00afdbbfc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6482-2535 0000-0002-1479-3107 |
| PQID | 2322775287 |
| PQPubID | 2040409 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TNSE_2018_2873609 crossref_primary_10_1109_TNSE_2018_2873609 proquest_journals_2322775287 ieee_primary_8485381 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on network science and engineering |
| PublicationTitleAbbrev | TNSE |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 anderson (ref13) 1991 ref15 ref14 ref31 ref30 ref11 ref32 ref10 tsan-yuk lam (ref6) 2015; 522 ref2 (ref33) 2009 ref1 ref17 ref16 ref19 ref18 heesterbeek (ref3) 2015; 347 ref24 gomez-rodriguez (ref20) 2010 ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref5 |
| References_xml | – ident: ref28 doi: 10.1109/TCYB.2015.2489702 – ident: ref30 doi: 10.1007/978-981-10-5287-3_6 – ident: ref32 doi: 10.1126/science.286.5439.509 – ident: ref24 doi: 10.1098/rsif.2010.0216 – ident: ref25 doi: 10.1016/j.jtbi.2007.12.001 – ident: ref7 doi: 10.1145/3038912.3052678 – start-page: 1019 year: 2010 ident: ref20 article-title: Inferring net-works of diffusion and influence publication-title: Proc ACM SIGKDD Conf Knowledge Discovery Data Mining – ident: ref23 doi: 10.1109/TNSE.2016.2523804 – ident: ref1 doi: 10.1038/nature06536 – ident: ref11 doi: 10.1098/rstb.2004.1480 – ident: ref27 doi: 10.1126/science.1245200 – ident: ref19 doi: 10.1088/1367-2630/12/9/093009 – ident: ref8 doi: 10.1186/s12916-014-0196-0 – ident: ref21 doi: 10.1038/ncomms15729 – year: 2009 ident: ref33 – ident: ref18 doi: 10.1109/TKDE.2015.2436918 – volume: 347 year: 2015 ident: ref3 article-title: Modeling infectious disease dynamics in the complex landscape of global health publication-title: Sci – ident: ref2 doi: 10.1109/JPROC.2015.2389146 – ident: ref10 doi: 10.1126/science.aag0219 – ident: ref16 doi: 10.1016/0025-5564(85)90064-1 – ident: ref9 doi: 10.1016/S0140-6736(16)31838-4 – ident: ref29 doi: 10.1371/journal.pone.0021197 – ident: ref31 doi: 10.1073/pnas.0400087101 – ident: ref14 doi: 10.1515/9781400841035 – ident: ref5 doi: 10.1126/science.1176062 – ident: ref26 doi: 10.1073/pnas.0906910106 – ident: ref15 doi: 10.1088/0034-4885/77/2/026602 – ident: ref4 doi: 10.1126/science.1177373 – volume: 522 start-page: 102 year: 2015 ident: ref6 article-title: Dissemination, divergence and establishment of H7N9 influenza viruses in China publication-title: Nature doi: 10.1038/nature14348 – ident: ref22 doi: 10.1109/TIT.2011.2158885 – year: 1991 ident: ref13 publication-title: Infectious Diseases of Humans Dynamics and Control doi: 10.1093/oso/9780198545996.001.0001 – ident: ref17 doi: 10.1007/s11434-014-0499-8 – ident: ref12 doi: 10.1056/NEJMra1109341 |
| SSID | ssj0001286333 |
| Score | 2.1907454 |
| Snippet | Understanding how infectious diseases spatially diffuse is critical to predict and control the epidemic prevalence. However, uncovering epidemic spatial... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 788 |
| SubjectTerms | Algorithms Computational modeling Computer simulation Disease control Epidemic maximum diffusion Epidemics Graph theory Heuristic algorithms Infectious diseases Inference algorithm Inference algorithms Local optimization Metapopulation network Networks SIR model Sociology Spatial invasion pathways Statistics Surveillance |
| Title | Uncovering Spatial Invasion on Metapopulation Networks with SIR Epidemics |
| URI | https://ieeexplore.ieee.org/document/8485381 https://www.proquest.com/docview/2322775287 |
| Volume | 6 |
| WOSCitedRecordID | wos000502281600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2334-329X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286333 issn: 2327-4697 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4WEe_NgUp1Ny8CR2a5e2SY8iGw50iNtgt5KmLyfpxr7-fl_argwUQegh0CQN-b30feR9ADygMigjJR1puHLszR61vMQJUIeCowj6SY70mxiP5XwefdTgqYqFQcTc-Qy7tpnf5acLvbWmsp70ibnYOOsjIUQRq3VgT5Eh57y8uPTcqDcdTwbWd0t2SSvgoXU5PGA9eS2VHz_gnKsMz_63nnM4LaVH9lzAfQE1zJpwcpBTsAkNKz4W2ZdbMJpl2vpo0htmiw8TsbFRtlPWRMboeceNWlYlvNi48AlfM2udZZPRJxsUBWT1-hJmw8H05dUpiyc4mjj4xjG-dn10w4gHWqcoPZ74IfeDKOgbzyhPBRyJbVmLRojIo4ROo-sr11UmTRKj-RXUs0WG18AkSUnaN6SKkSzgJzR9KNDra2HSgD4i2uDu9zXWZWZxW-DiK841DDeKLRSxhSIuoWjDYzVkWaTV-Ktzy-591bHc9jZ09uDF5cFbxyQg9gVRmBQ3v4-6hQbNHRX-eB2ob1ZbvINjvSNoVvc5TX0DigTKAg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_IFJwHv6Y4nZqDJ7Fb26RtehTZWHEWcRN2K2n2cpIqbu7v96XtxkARhB4CTZqQ30vfR94HwA0qgzJW0pGGK8fe7FHLy50AdRhxjAI_L5EeRWkqp9P4eQvu1rEwiFg6n2HXNsu7_Nm7_rKmsp4UxFxsnPV2IITvVdFaGxYVGXLO66tLz417k3Tct95bskt6AQ-t0-EG8ymrqfz4BZd8ZXDwvxUdwn4tP7L7CvAj2MLiGPY2sgoeQ9MKkFX-5RYkr4W2Xpr0htnyw0RuLCmWyhrJGD1PuFAf6yJeLK28wufM2mfZOHlh_aqErJ6fwOugP3kYOnX5BEcTD184RmhXoBvGPNB6htLjuQi5COLAN55Rngo4EuOyNo0Qkcc5nUdXKNdVZpbnRvNTaBTvBZ4BkyQnaWFIGSNpQOT0-TBCz9eRmQU0SdQGd7Wvma5zi9sSF29ZqWO4cWahyCwUWQ1FG27XQz6qxBp_dW7ZvV93rLe9DZ0VeFl99OYZiYh-RDQmo_PfR13D7nDyNMpGSfp4AU2aJ6688zrQWHx-4SXs6CXB9HlV0tc3NhXNSQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+Spatial+Invasion+on+Metapopulation+Networks+with+SIR+Epidemics&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Wang%2C+Jian-Bo&rft.au=Li%2C+Xiang&rft.date=2019-10-01&rft.issn=2327-4697&rft.eissn=2334-329X&rft.volume=6&rft.issue=4&rft.spage=788&rft.epage=800&rft_id=info:doi/10.1109%2FTNSE.2018.2873609&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSE_2018_2873609 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |