Objective-Constraint Mutual-Guided Surrogate-Based Particle Swarm Optimization for Expensive Constrained Multimodal Problems

Expensive constraint multimodal optimization problems (ECMMOPs) have such characteristics as expensive objectives and constraints, and multiple optimal modalities simultaneously, which pose severe challenges to evolutionary optimization methods. This article studies an objective-constraint mutual-gu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 27; H. 4; S. 908 - 922
Hauptverfasser: Zhang, Yong, Ji, Xin-Fang, Gao, Xiao-Zhi, Gong, Dun-Wei, Sun, Xiao-Yan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Expensive constraint multimodal optimization problems (ECMMOPs) have such characteristics as expensive objectives and constraints, and multiple optimal modalities simultaneously, which pose severe challenges to evolutionary optimization methods. This article studies an objective-constraint mutual-guided surrogate-assisted particle swarm optimization algorithm for the kind of problem, aiming to discover multiple competing feasible optimal solutions at a lower calculation cost. The algorithm designs first a new two-layer cooperative surrogate model framework based on heterogeneous database to effectively adjust the prediction accuracies of objective surrogates and constraint surrogates on different search regions. An objective-constraint mutual-guided partial evaluation strategy (O-C-PES) is developed to generate high-quality infilling samples for objective and constraint surrogates, respectively, based on which the number of unnecessary real evaluations can be significantly reduced. Moreover, a position feature-guided hybrid update mechanism (PF-HUM) is proposed to find more optimal solutions by searching excellent infeasible and feasible areas at the same time, and a feasible ratio-driven local search (FR-LS) strategy is proposed to improve the algorithm's exploitation. Compared with four existing surrogate-assisted evolutionary algorithms (EAs) and one constraint multimodal EAs on 21 benchmark problems and three engineering instances, experiment results show that the proposed algorithm can simultaneously obtain multiple highly-competitive feasible optimal solutions with less computational cost.
AbstractList Expensive constraint multimodal optimization problems (ECMMOPs) have such characteristics as expensive objectives and constraints, and multiple optimal modalities simultaneously, which pose severe challenges to evolutionary optimization methods. This article studies an objective-constraint mutual-guided surrogate-assisted particle swarm optimization algorithm for the kind of problem, aiming to discover multiple competing feasible optimal solutions at a lower calculation cost. The algorithm designs first a new two-layer cooperative surrogate model framework based on heterogeneous database to effectively adjust the prediction accuracies of objective surrogates and constraint surrogates on different search regions. An objective-constraint mutual-guided partial evaluation strategy (O-C-PES) is developed to generate high-quality infilling samples for objective and constraint surrogates, respectively, based on which the number of unnecessary real evaluations can be significantly reduced. Moreover, a position feature-guided hybrid update mechanism (PF-HUM) is proposed to find more optimal solutions by searching excellent infeasible and feasible areas at the same time, and a feasible ratio-driven local search (FR-LS) strategy is proposed to improve the algorithm's exploitation. Compared with four existing surrogate-assisted evolutionary algorithms (EAs) and one constraint multimodal EAs on 21 benchmark problems and three engineering instances, experiment results show that the proposed algorithm can simultaneously obtain multiple highly-competitive feasible optimal solutions with less computational cost.
Author Sun, Xiao-Yan
Gong, Dun-Wei
Ji, Xin-Fang
Gao, Xiao-Zhi
Zhang, Yong
Author_xml – sequence: 1
  givenname: Yong
  orcidid: 0000-0003-0026-8181
  surname: Zhang
  fullname: Zhang, Yong
  email: yongzh401@126.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 2
  givenname: Xin-Fang
  orcidid: 0000-0002-3514-6777
  surname: Ji
  fullname: Ji, Xin-Fang
  email: mimosa_615615@126.com
  organization: School of Computing, University of Eastern Finland, Kuopio, Finland
– sequence: 3
  givenname: Xiao-Zhi
  orcidid: 0000-0002-0078-5675
  surname: Gao
  fullname: Gao, Xiao-Zhi
  email: xiao.z.gao@gmail.com
  organization: School of Computing, University of Eastern Finland, Kuopio, Finland
– sequence: 4
  givenname: Dun-Wei
  orcidid: 0000-0003-2838-4301
  surname: Gong
  fullname: Gong, Dun-Wei
  email: dwgong@vip.163.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 5
  givenname: Xiao-Yan
  orcidid: 0000-0002-1386-6853
  surname: Sun
  fullname: Sun, Xiao-Yan
  email: xysun78@126.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
BookMark eNp9kEtPwzAQhC0EEs8fgLhE4pyyjvOwj1CVgkRVpBbELbKTDXKVxMF2eIkfT0pRDxw47a4036xmDslua1ok5JTCiFIQF8vJ43gUQRSNGOURp7BDDqiIaQgQpbvDDlyEWcaf9smhcysAGidUHJCvuVph4fUrhmPTOm-lbn0w630v63Da6xLLYNFba56lx_BKuuG-l9brosZg8SZtE8w7rxv9Kb02bVAZG0zeO2zdYBlsLQdq1teDzpSyDu6tUTU27pjsVbJ2ePI7j8jD9WQ5vgnv5tPb8eVdWESC-bCiGFcl55IzxRQwpTIhKsyYBCpVigCVSJRAmpacphjLmKksikWmUCaYJuyInG98O2teenQ-X5netsPLPOJxzAVlAIMq26gKa5yzWOWF9j-p1hHqnEK-rjpfV52vq85_qx5I-ofsrG6k_fiXOdswGhG3epGJhAtg3zfMjrs
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s40747_025_01947_0
crossref_primary_10_1016_j_energy_2024_134247
crossref_primary_10_1016_j_swevo_2025_102068
crossref_primary_10_1016_j_swevo_2025_102087
crossref_primary_10_1109_TETCI_2023_3240221
crossref_primary_10_1016_j_ins_2025_121909
crossref_primary_10_1016_j_swevo_2025_102151
crossref_primary_10_1109_JAS_2024_124320
crossref_primary_10_1016_j_swevo_2025_102093
crossref_primary_10_1109_TSMC_2022_3219080
crossref_primary_10_1016_j_knosys_2025_114238
crossref_primary_10_1109_TETCI_2024_3358377
crossref_primary_10_1017_S026357472500027X
crossref_primary_10_1016_j_automatica_2025_112168
crossref_primary_10_1109_JAS_2024_124947
crossref_primary_10_1007_s12065_021_00659_x
crossref_primary_10_1007_s10489_024_05612_w
crossref_primary_10_1016_j_swevo_2025_102138
crossref_primary_10_1016_j_swevo_2025_102014
crossref_primary_10_1109_TSMC_2025_3573195
Cites_doi 10.1109/TCYB.2015.2493239
10.1109/TEVC.2019.2910721
10.1080/0305215X.2020.1722118
10.1016/j.swevo.2018.08.017
10.1080/0305215X.2011.637556
10.1109/TEVC.2021.3066606
10.1109/TEVC.2006.872344
10.1109/ICEC.1998.699146
10.1016/S0045-7825(99)00389-8
10.1109/TNN.2002.1000134
10.1016/j.engappai.2017.07.026
10.1002/int.22707
10.1109/TCYB.2018.2809430
10.1007/978-981-10-0448-3_67
10.1109/TCYB.2020.3008280
10.1109/TEVC.2021.3064835
10.1007/978-81-322-2184-5_3
10.1109/TCYB.2017.2710978
10.1109/TEVC.2021.3078486
10.1016/j.asoc.2020.106154
10.1016/S0045-7825(01)00323-1
10.1109/CEC.2011.5949693
10.1098/rspa.2006.1679
10.1016/j.asoc.2021.107276
10.1109/TEVC.2005.857610
10.1109/4235.985692
10.1007/978-3-319-91641-5_21
10.3934/jimo.2014.10.777
10.1109/TEVC.2009.2039141
10.1016/j.ijhydene.2019.04.094
10.1016/j.swevo.2011.10.001
10.1016/j.ins.2018.11.041
10.1109/TEVC.2009.2027359
10.1109/TEVC.2017.2754271
10.2307/2290782
10.1016/j.amc.2015.11.001
10.1109/TEVC.2019.2944180
10.1016/j.asoc.2021.107233
10.1109/CEC.2019.8790113
10.1145/1830483.1830568
10.2514/3.13035
10.1016/j.ins.2021.05.015
10.1109/MHS.1995.494215
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2022.3182810
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 922
ExternalDocumentID 10_1109_TEVC_2022_3182810
9795890
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62133015; 61876185; 51875113
  funderid: 10.13039/501100001809
– fundername: Key research and Development Program in Xuzhou
  grantid: KC20184
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-f1e4fd88a83b3b03bb799fe73a01ab6e00f95b9e16d816e4a43b72497bea5e653
IEDL.DBID RIE
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001042026800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Mon Jun 30 04:02:43 EDT 2025
Tue Nov 18 22:35:25 EST 2025
Sat Nov 29 03:13:49 EST 2025
Wed Aug 27 02:25:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-f1e4fd88a83b3b03bb799fe73a01ab6e00f95b9e16d816e4a43b72497bea5e653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1386-6853
0000-0002-0078-5675
0000-0002-3514-6777
0000-0003-0026-8181
0000-0003-2838-4301
PQID 2844891300
PQPubID 85418
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TEVC_2022_3182810
proquest_journals_2844891300
ieee_primary_9795890
crossref_primary_10_1109_TEVC_2022_3182810
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References friedman (ref47) 2012; 32
ref12
ref15
ref14
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ma (ref6) 2021
ref48
ref41
ref44
schonlau (ref28) 1998
ref49
ref8
ref7
(ref22) 2019
ref9
ref4
ref3
ref5
liang (ref45) 2006; 41
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
leong (ref43) 2008
ref24
ref23
ref26
ref25
ref20
er (ref42) 2002; 13
ref21
ref27
ref29
gao (ref13) 2021
li (ref46) 2013
singh (ref51) 2011
References_xml – ident: ref19
  doi: 10.1109/TCYB.2015.2493239
– ident: ref7
  doi: 10.1109/TEVC.2019.2910721
– ident: ref31
  doi: 10.1080/0305215X.2020.1722118
– ident: ref14
  doi: 10.1016/j.swevo.2018.08.017
– ident: ref29
  doi: 10.1080/0305215X.2011.637556
– ident: ref39
  doi: 10.1109/TEVC.2021.3066606
– volume: 41
  start-page: 8
  year: 2006
  ident: ref45
  article-title: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization
  publication-title: J Appl Mech
– year: 2019
  ident: ref22
  article-title: The 3rd Evolutionary Computation Competition
  publication-title: Journal of Japanese Society for Evolutionary Computing
– ident: ref21
  doi: 10.1109/TEVC.2006.872344
– year: 2021
  ident: ref6
  article-title: An adaptive localized decision variable analysis approach to large-scale multiobjective and many-objective optimization
  publication-title: IEEE Trans Cybern
– ident: ref25
  doi: 10.1109/ICEC.1998.699146
– ident: ref18
  doi: 10.1016/S0045-7825(99)00389-8
– volume: 13
  start-page: 697
  year: 2002
  ident: ref42
  article-title: Face recognition with radial basis function (RBF) neural networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2002.1000134
– ident: ref3
  doi: 10.1016/j.engappai.2017.07.026
– ident: ref5
  doi: 10.1002/int.22707
– ident: ref2
  doi: 10.1109/TCYB.2018.2809430
– ident: ref35
  doi: 10.1007/978-981-10-0448-3_67
– ident: ref12
  doi: 10.1109/TCYB.2020.3008280
– ident: ref4
  doi: 10.1109/TEVC.2021.3064835
– ident: ref37
  doi: 10.1007/978-81-322-2184-5_3
– ident: ref11
  doi: 10.1109/TCYB.2017.2710978
– ident: ref23
  doi: 10.1109/TEVC.2021.3078486
– ident: ref52
  doi: 10.1016/j.asoc.2020.106154
– year: 2021
  ident: ref13
  article-title: Solving expensive multimodal optimization problem by a decomposition differential evolution algorithm
  publication-title: IEEE Trans Cybern
– ident: ref15
  doi: 10.1016/S0045-7825(01)00323-1
– ident: ref34
  doi: 10.1109/CEC.2011.5949693
– ident: ref1
  doi: 10.1098/rspa.2006.1679
– year: 2013
  ident: ref46
  publication-title: Benchmark functions for CEC'2013 special session and competition on niching methods for multimodal function optimization
– ident: ref32
  doi: 10.1016/j.asoc.2021.107276
– ident: ref27
  doi: 10.1109/TEVC.2005.857610
– ident: ref26
  doi: 10.1109/4235.985692
– ident: ref40
  doi: 10.1007/978-3-319-91641-5_21
– ident: ref50
  doi: 10.3934/jimo.2014.10.777
– ident: ref36
  doi: 10.1109/TEVC.2009.2039141
– ident: ref30
  doi: 10.1016/j.ijhydene.2019.04.094
– ident: ref20
  doi: 10.1016/j.swevo.2011.10.001
– ident: ref17
  doi: 10.1016/j.ins.2018.11.041
– ident: ref44
  doi: 10.1109/TEVC.2009.2027359
– ident: ref8
  doi: 10.1109/TEVC.2017.2754271
– volume: 32
  start-page: 674
  year: 2012
  ident: ref47
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: Amer Stat Assoc
– ident: ref48
  doi: 10.2307/2290782
– start-page: 11
  year: 1998
  ident: ref28
  publication-title: Global versus local search in constrained optimization of computer models
– ident: ref16
  doi: 10.1016/j.amc.2015.11.001
– year: 2008
  ident: ref43
  publication-title: Multi-objective Particle Swarm Optimization Integration of Dynamic Population and Multiple-swarm Concepts and Constraint Handing
– ident: ref9
  doi: 10.1109/TEVC.2019.2944180
– ident: ref38
  doi: 10.1016/j.asoc.2021.107233
– year: 2011
  ident: ref51
  article-title: Development of optimization methods to deal with current challenges in engineering design optimization
– ident: ref41
  doi: 10.1109/CEC.2019.8790113
– ident: ref10
  doi: 10.1145/1830483.1830568
– ident: ref49
  doi: 10.2514/3.13035
– ident: ref33
  doi: 10.1016/j.ins.2021.05.015
– ident: ref24
  doi: 10.1109/MHS.1995.494215
SSID ssj0014519
Score 2.5222142
Snippet Expensive constraint multimodal optimization problems (ECMMOPs) have such characteristics as expensive objectives and constraints, and multiple optimal...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 908
SubjectTerms Algorithms
Computational modeling
Computing costs
Constraints
Costs
Evolutionary algorithms
Mathematical models
multimodal optimization
Optimization
Particle swarm optimization
particle swarm optimization (PSO)
Predictive models
Search problems
Strategy
surrogate model
Title Objective-Constraint Mutual-Guided Surrogate-Based Particle Swarm Optimization for Expensive Constrained Multimodal Problems
URI https://ieeexplore.ieee.org/document/9795890
https://www.proquest.com/docview/2844891300
Volume 27
WOSCitedRecordID wos001042026800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2Vqgc4UNqC2NJWPnBCmDobJ7aPULXlAO1K_dDeIn9KrdhdlN2UCz8ej-ONKhUhccvBjiw92zPjmTcP4L0UQoWqcJTbECg3MUBRlZEUfdXa1oXXPiH9TVxcyOlUTTbg48CF8d6n4jP_CT9TLt8tbIdPZcdKqEqqGKA_E6LuuVpDxgDbpPTF9Cp6jHKaM5gFU8fXp7cnMRIcj2OAGgMMJMs-skFJVOXJTZzMy9n2_y3sFbzMbiT53OO-Axt-vgvba4kGkk_sLrx41G9wD35fmvv-gqMo1JnkIVbke4ccEnre3TnvyFXXtgt8W6NfooFzZJL3Frn6pdsZuYxXzCxzN0l0eAn2Sk418GT4ZZyVeL2zhYtrnPSSNcvXcHN2en3ylWb5BWqjD7CiofA8OCm1LE1pWGmMUCp4UWpWaFN7xkKEVfmidrKoPde8NCJGc8J4Xfm6Kt_A5nwx92-BcFeqIMYWZSh4sFoj_14w7jRTJlg1ArYGpLG5Nzku-EeTYhSmGsSwQQybjOEIPgxTfvaNOf41eA9BGwZmvEZwsEa9yUd32UR7zTF3y9j-32e9g-eoOd9XAR7A5qrt_CFs2YfV3bI9SrvyD1xB4e4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB0hQGo5AIVWTaHFB06oLt6sd20fWwQFNYRIpFVuK39KVE2CNtly4cdje50VUqtKve3BXll6tmfGM28ewDFnTLgiM5hq5zBVPkARheI4-KqlLjMrbUR6wIZDPpmI0Rp87Lgw1tpYfGY_hc-Yyzdz3YSnslPBRMGFD9A3Ckr7pGVrdTmD0CilLacX3mfkk5TDzIg4HZ__OPOxYL_vQ1QfYgS67DMrFGVV_riLo4G52Pm_pe3CdnIk0ecW-VewZmd7sLMSaUDpzO7B1rOOg_vweKN-tlccDlKdUSBiia6bwCLBX5s7Yw26bep6Hl7X8Bdv4gwapd2Fbh9kPUU3_pKZJvYm8i4vCt2SYxU86n7pZ0Vm73Ru_BpHrWjN4jV8vzgfn13iJMCAtfcClthlljrDueS5yhXJlWJCOMtySTKpSkuI88AKm5WGZ6WlkuaK-XiOKSsLWxb5G1ifzWf2LSBqcuFYXwchCuq0lIGBzwg1kgjltOgBWQFS6dSdPCz4VxWjFCKqgGEVMKwShj046abct605_jV4P4DWDUx49eBwhXqVDu-i8habhuwtIe_-PusIXlyOrwfV4Gr47QBeBgX6tibwENaXdWPfw6b-vbxb1B_iDn0CPpflNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Objective-Constraint+Mutual-Guided+Surrogate-Based+Particle+Swarm+Optimization+for+Expensive+Constrained+Multimodal+Problems&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Zhang%2C+Yong&rft.au=Ji%2C+Xin-Fang&rft.au=Gao%2C+Xiao-Zhi&rft.au=Gong%2C+Dun-Wei&rft.date=2023-08-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=27&rft.issue=4&rft.spage=908&rft.epage=922&rft_id=info:doi/10.1109%2FTEVC.2022.3182810&rft.externalDocID=9795890
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon